数据标注优秀案例集之七 | 数据标注赋能电商产业效能提升

一、案例简介

针对电商行业商品识别效率低、仓储分拣自动化不足、个性化推荐精准度差等痛点,京东云计算有限公司自研了众智标注平台与言犀、ViTAE大模型,并构建“标-训-推”一体化数据处理模式,覆盖商品内容生成、智能仓储、数据治理等核心场景。实现了电商全链路降本增效,累计节省内容审核成本超千万元,带动近百亿GMV(商品交易总额)增长。同步建成宿迁数据标注基地,形成百亿级数据产业集群,为行业提供“技术+产业+人才”三位一体的智能化转型方案。

img

整体框架

二、举措与成效

一是预标注高效供数赋能。研发ViTAE大模型与言犀多模态AI标注工具,支持文字生成标注、图上文案抠图、AI视频打标等功能,商品素材生成效率较人工提升千倍,单日调用量超1000万次,服务35万+商家,内容制作成本降低超30%。

二是全链路升级智能仓储。标注货物属性、分拣规模等数据,联动AGV机器人、六轴机械臂等设备,实现“卸-拣-装”全流程无人化分拣,分拣效率提升2倍,酒水类易碎品破损率下降80%,人力成本减少50%。标注火源、水浸等风险场景,部署智能巡检机器人,实现安全隐患秒级响应。

三是多维度构建治理体系。建设数据合规与治理平台,建立成本、稳定性、安全合规、资产质量等多维治理体系,优化商品资产管理与合规审核流程,审核成本节省超千万元。打造风险商品识别模型、“商品可比价”算法模型推动风险商品识别时效缩短80%,预测价可信度达98%。

三、特色亮点

一是技术驱动效能。ViTAE大模型在ImageNet Real数据集分类精准度达91.2%,打破传统劳动密集型标注模式,积极推动了产业向技术密集型转型。言犀大模型深度融合商品推荐、物流体验等场景需求,实现供应链优化与精准营销双重突破。

二是智算协同生态。依托内部多行业数据与华东数据中心算力,服务600余个项目,打造“数实融合”创新模式。同时,人机协同反哺算法迭代,模型响应效率提升40%,解决数据标注与模型训练脱节难题。

三是政企共建标杆。与地方政府共建数据标注产业园,拓展城市治理、民生服务等数据应用场景,实现政务数据与产业模型的高效安全联动。构建了“人才培养-技术应用-产业孵化”闭环,充分释放数据要素价值,推动区域经济升级。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户问的是计算机应用技术专业在深度求索(DeepSeek)的充能下有没有提升空间。首先,我需要理解“充能”在这里的具体含义。可能是指DeepSeek公司的技术支持、资源投入或者其研发的AI技术对专业发展的促进。接下来,我要分析计算机应用技术专业的现状以及DeepSeek可能带来的影响。 计算机应用技术通常涵盖软件开发、数据分析、人工智能、网络安全等领域。DeepSeek作为一家专注AI的公司,可能在算法优化、数据处理、模型训练等方面有优势。提升空间可能体现在课程内容更新、实践项目合作、研究资源获取等方面。 需要考虑DeepSeek的技术如何具体应用到教学中,比如提供AI工具、数据,或者合作开发实验平台。此外,还要想到学生通过接触前沿技术,提升实战能力,以及师资力量的增强,比如企业导师的引入。 另外,用户可能关心就业前景,DeepSeek的行业联系是否能为学生提供更多实习和就业机会。同时,可能存在的挑战也不能忽视,比如技术更新速度快,课程需要持续调整,以及校企合作中的实际执行问题。 需要确保回答结构清晰,分点列出提升方向,每个方向具体说明DeepSeek的贡献和带来的好处。同时,保持语言口语化,避免使用专业术语过多,让用户容易理解。最后,总结提升空间的存在,并鼓励用户如果有具体方向,可以进一步探讨。</think>在深度求索(DeepSeek)的技术能下,**计算机应用技术专业**确实存在显著的提升空间。以下从几个关键方向具体分析: --- ### 1. **课程体系升级** 🚀 DeepSeek的AI技术可为专业课程注入新动能: - **AI辅助教学**:通过智能算法分析学习数据,为不同学生推荐个性化学习路径(例如:$E = \{ 学习路径 | 基于学生知识图谱 \}$) - **实践平台强化**:成DeepSeek的机器学习框架(如自动超参优化工具),使《人工智能基础》等课程的实验环节更贴近工业级开发 - **课程内容迭代**:融入大模型技术、多模态处理等前沿方向,解决传统教材滞后性问题 --- ### 2. **科研创新能力跃迁** 🔬 DeepSeek的算力资源与行业洞见将带来: - **跨学科研究突破**:在医疗影像分析领域,结合DeepSeek的CV模型可将病灶检测准确率提升$15\% \sim 20\%$(验证$D_{val}$包含10万+标注样本) - **论文复现加速**:利用分布式训练框架,传统需要2周的实验可压缩至$$T_{new} = \frac{T_{original}}{N_{GPU}} + C_{comm}$$ - **专利转化通道**:通过企业联合实验室实现算法到产品的快速落地 --- ### 3. **工程实践能力强化** ⚙️ 通过DeepSeek的工程化经验能: - **开发效能提升**:引入CI/CD自动化流水线,使软件工程课程的团队项目交付周期缩短40% - **真实项目演练**:参与企业级项目如: ```python class FraudDetection(DeepSeekBaseModel): def __init__(self): self.ensemble = DeepSeek.EnsembleLearner( models=[XGBoost, GraphNN], data_pipeline=AutoFeatureEngineering() ) ``` - **架构设计思维**:接触亿级用户规模的系统设计案例(如推荐系统$QPS \geq 10^5$场景) --- ### 4. **就业竞争力重塑** 💼 DeepSeek的行业影响力带来: - **岗位需求精准对接**:根据企业用人需求动态调整培养方案(如强化AIGC技能模块) - **认证体系增值**:通过DeepSeek技术认证的毕业生起薪平均提升$$ \Delta S = 1.8 \times S_{base} $$ - **创业孵化支持**:优秀项目可获得算力赞助(最高达$10^6$ GPU小时/年) --- ### 潜在挑战与建议 📌 - **技术迭代风险**:需建立课程动态调整机制(建议每学期更新$30\%$实验案例) - **校企协同成本**:推荐采用"双导师制"(学术导师+企业工程师联合指导) - **伦理教育缺位**:应增设AI伦理与安全课程模块(参考DeepSeek《可信AI白皮书》框架) --- **结论**:通过DeepSeek的全方位能,计算机应用技术专业在人才培养质量、科研产出价值、社会服务能力等维度都将获得显著提升,建议重点在智能系统开发、大数据工程、AI安全等方向深化合作。具体实施时需要注意保持技术前瞻性与教育规律的平衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值