一、案例简介
针对电商行业商品识别效率低、仓储分拣自动化不足、个性化推荐精准度差等痛点,京东云计算有限公司自研了众智标注平台与言犀、ViTAE大模型,并构建“标-训-推”一体化数据处理模式,覆盖商品内容生成、智能仓储、数据治理等核心场景。实现了电商全链路降本增效,累计节省内容审核成本超千万元,带动近百亿GMV(商品交易总额)增长。同步建成宿迁数据标注基地,形成百亿级数据产业集群,为行业提供“技术+产业+人才”三位一体的智能化转型方案。
整体框架
二、举措与成效
一是预标注高效供数赋能。研发ViTAE大模型与言犀多模态AI标注工具,支持文字生成标注、图上文案抠图、AI视频打标等功能,商品素材生成效率较人工提升千倍,单日调用量超1000万次,服务35万+商家,内容制作成本降低超30%。
二是全链路升级智能仓储。标注货物属性、分拣规模等数据,联动AGV机器人、六轴机械臂等设备,实现“卸-拣-装”全流程无人化分拣,分拣效率提升2倍,酒水类易碎品破损率下降80%,人力成本减少50%。标注火源、水浸等风险场景,部署智能巡检机器人,实现安全隐患秒级响应。
三是多维度构建治理体系。建设数据合规与治理平台,建立成本、稳定性、安全合规、资产质量等多维治理体系,优化商品资产管理与合规审核流程,审核成本节省超千万元。打造风险商品识别模型、“商品可比价”算法模型推动风险商品识别时效缩短80%,预测价可信度达98%。
三、特色亮点
一是技术驱动效能。ViTAE大模型在ImageNet Real数据集分类精准度达91.2%,打破传统劳动密集型标注模式,积极推动了产业向技术密集型转型。言犀大模型深度融合商品推荐、物流体验等场景需求,实现供应链优化与精准营销双重突破。
二是智算协同生态。依托内部多行业数据与华东数据中心算力,服务600余个项目,打造“数实融合”创新模式。同时,人机协同反哺算法迭代,模型响应效率提升40%,解决数据标注与模型训练脱节难题。
三是政企共建标杆。与地方政府共建数据标注产业园,拓展城市治理、民生服务等数据应用场景,实现政务数据与产业模型的高效安全联动。构建了“人才培养-技术应用-产业孵化”闭环,充分释放数据要素价值,推动区域经济升级。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。