今天咱们来聊聊一位业界大佬的心路历程。
他不是别人,正是我们的机器学习教父、Coursera的联合创始人、斯坦福大学的兼职教授、前百度AI集团和谷歌大脑的掌门人——吴恩达(Andrew Ng)。
吴教父最近发表了一篇长文,讲述了他在AI教育领域的心得体会。说实话,看完之后我都不知道该哭还是该笑了。这简直就是一个**学霸版的"我太难了"**啊!
首先,吴大佬提到,随着AI技术的普及,无论是开发者还是非开发者,都需要高质量的培训来跟上时代的步伐。听起来很正常是吧?但是接下来,教父就开始了他的"凡尔赛"之旅:
“世界上已经有足够多的低质量课程、时事通讯、社交媒体帖子和其他形式的内容了。”
好家伙,这是在暗示我们这些业余AI爱好者平时看的都是垃圾吗?不过话说回来,我看了看自己的收藏夹,好像还真是…
吴大佬还自豪地表示,他们团队为了一个课程,甚至会就是用行矩阵还是列矩阵这种问题展开激烈辩论,还要做PPT互相说服。我的天,这简直就是数学界的"鸡头还是凤尾"之争啊!我上次为这种问题争论还是在小学,那会儿我和同桌就"1+1到底等于2还是等于11"展开了激烈的讨论。
更绝的是,他们还开发了一个基于大语言模型的应用,专门用来阅读学员评价,及时发现重要问题。这简直就是把AI用在了"监视"AI学习者上,太套娃了!
Gavin M ☯︎ 对此评论道:
你的待读书单有多长?
我估计吴大佬的待读/读完书单长得能绕地球一圈。不过话说回来,我们普通人的待读书单可能更长,因为我们不仅读的少,还不懂的多,这可真是一个天上一个地下啊!
AiFA LABS 则乐观地表示:
恭喜!你做得很棒!我们最终会成功的。继续加油!
听起来像是在给自己打气,但其实是在给所有被AI虐得体无完肤的学习者们打气。毕竟在这个AI横行的世界里,我们这些凡人能不被淘汰就已经很不错了。
AI Pro Insights 深有感触地说:
这是一篇很有价值的阅读。了解到你如何随时间推移完善你的内容,感觉很好。只有伟大的学习者才能创造出好的学习内容。
没错,这就是学霸和学渣的区别。学霸不仅自己学得好,还能把知识传授给别人。而我这样的学渣,连自己学都学不明白,还想着教别人,简直就是痴人说梦。
最后,吴大佬还提到,他已经连续170周保持阅读习惯了。这个数字让我想起了自己的刷抖音小姐姐跳舞的连续时长,好像也差不多…不过人家是在学习,我是在……,这区别可就大了去了。
总的来说,吴恩达教授的这篇文章,不仅让我们看到了一个顶级AI专家的学习态度,也让我们意识到了自己的不足。
在这个AI飞速发展的时代,我们要么跟上节奏,要么就被淘汰。
所以,各位AI小学生们,让我们一起努力学习吧!虽然我们可能永远也达不到吴大佬的水平,但至少我们可以在被AI取代之前多活几年,不是吗?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。