从文档中手动创建数百个 QA(问题-上下文-答案)样本可能非常耗时且劳动密集。此外,人工生成的问题可能难以达到全面评估所需的复杂程度,最终影响评估的质量。通过使用合成数据生成,开发人员在数据聚合过程中的时间可以减少 90%。
理想的数据集应涵盖生产中遇到的各种类型的问题,包括不同难度级别的问题。默认情况下,LLM 不擅长创建多样化的样本,因为它倾向于遵循共同的路径。今天我们介绍Ragas中创建数据的方法,Ragas 采用了一种新颖的方法来生成数据,通过采用进化生成范式实现了这一点,其中具有不同特征的问题(例如推理、条件、多上下文等)是从提供的文档集中系统地制作出来的。这种方法可确保全面覆盖管道中各个组件的性能,从而实现更强大的训练和评估过程。
方法介绍
大型语言模型 (LLM) 能够有效地将简单问题转化为更复杂的问题。为了从提供的文档中生成中等难度到困难难度的样本,我们采用了以下方法:
-
推理:重写问题,以增强推理的需要,从而有效地回答问题。
-
增加条件:修改问题以引入条件元素,这增加了问题的复杂性。
-
多上下文:以需要来自多个相关部分或块的信息来形成答案的方式重新措辞问题。
-
对话式:部分问题经过演化,可以转化为对话式样本。这些问题模拟了聊天式的问答互动,模仿了聊天式问答流程。
实现Prompt展示
推理
根据提供的上下文将问题重写为多跳推理问题,从而使给定问题复杂化。``回答这个问题应该要求读者利用给定上下文中的信息做出多个逻辑联系或推断。``改写题目时要遵循的规则:``1. 确保改写后的问题可以完全根据上下文提供的信息来回答。``2. 不要提出超过15个单词的问题。尽可能使用缩写。``3. 确保你的问题清晰明了。``4. “基于所提供的上下文”、“根据上下文”等短语不允许出现在问题中。
多上下文
任务是重写并使给定的问题复杂化,使回答问题需要从context1和context2中获得信息。``按照下面给出的规则重写问题。``1. 改写后的问题不应该很长。尽可能使用缩写。``2. 改写后的问题必须是合理的,必须被人类理解和回应。``3. 改写后的问题必须完全符合上下文1和上下文2中的信息。``4. 阅读并理解上下文中的内容,然后重写问题,这样回答问题时就需要同时了解上下文1和上下文2。``5. 像“基于提供的上下文”、“根据上下文?”等不允许出现在问题中。
条件prompt
通过引入条件元素重写提供的问题以增加其复杂性。``目标是通过加入影响问题上下文的场景或条件,使问题更加复杂。``按照下面给出的规则重写问题。``1. 改写后的问题不应超过25个单词。尽可能使用缩写。``2. 改写后的问题必须是合理的,必须被人类理解和回应。``3. 改写后的问题必须能从目前的信息中完全回答。
对话式
将提供的问题重新格式化为两个单独的问题,就像它是对话的一部分一样。每个问题都应该集中在与原问题相关的一个特定方面或子主题上。``按照下面给出的规则重写问题。``1. 改写后的问题不应超过25个单词。尽可能使用缩写。``2. 改写后的问题必须是合理的,必须被人类理解和回应。``3. 改写后的问题必须能从目前的信息中完全回答。``4. 像“提供上下文”、“根据上下文?”等不允许出现在问题中。
详细可参考:
https://github.com/explodinggradients/ragas/blob/main/src/ragas/testset/prompts.py
代码实现
from ragas.testset.generator import TestsetGenerator``from ragas.testset.evolutions import simple, reasoning, multi_context``from langchain_openai import ChatOpenAI, OpenAIEmbeddings`` ``# documents = load your documents`` ``# generator with openai models``generator_llm = ChatOpenAI(model="gpt-3.5-turbo-16k")``critic_llm = ChatOpenAI(model="gpt-4")``embeddings = OpenAIEmbeddings()`` ``generator = TestsetGenerator.from_langchain(` `generator_llm,` `critic_llm,` `embeddings``)`` ``# Change resulting question type distribution``distributions = {` `simple: 0.5,` `multi_context: 0.4,` `reasoning: 0.1``}`` ``# use generator.generate_with_llamaindex_docs if you use llama-index as document loader``testset = generator.generate_with_langchain_docs(documents, 10, distributions)` `testset.to_pandas()
生成的问题分析
自定义数据分布

分析创建的数据集中不同问题类型的频率
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。