揭秘RAG中的幻觉检测:多种方法全面基准测试,找出最优解!

在当前的 Retrieval-Augmented Generation (RAG) 应用中,幻觉问题依然是不可忽视的难题。模型生成的内容往往会出现与事实不符的情况,给用户带来困扰甚至误导。

因此,如何有效检测并避免这些幻觉,成了关键研究方向。今天我们将深入评估 4 个主流 RAG 数据集中的几种流行幻觉检测器。

通过 AUROC 和精度/召回率等指标,我们将分析 G-eval、Ragas 和 Trustworthy Language Model 等方法在自动标记 LLM 错误响应方面的表现,看看哪种方法更具优势,能够帮助我们更好地应对幻觉挑战。

众所周知,大型语言模型(LLM)在处理那些其训练数据中未得到充分支持的问题时,容易生成错误答案。检索增强生成(RAG)系统通过为LLM提供来自特定知识库的上下文和信息,来增强其回答的准确性。

尽管许多组织正在迅速采用RAG技术,将LLM与自身的专有数据结合使用,但幻觉和逻辑错误依然是重大挑战。

一个广为人知的案例是,加拿大航空公司因其RAG聊天机器人错误解读了退款政策的细节,而在一场法律纠纷中败诉。这一事件进一步凸显了幻觉问题的严重性。

要理解这一问题,我们首先需要回顾一下RAG系统的工作原理。当用户提出问题(如“这是否符合退款条件?”),检索组件会从知识数据库中搜索相关信息,以提供准确的响应。最相关的搜索结果将被格式化为上下文,并与用户的问题一起输入到LLM中,生成最终呈现给用户的答案。

然而,企业级RAG系统通常非常复杂,最终的回答可能因为多个原因而不准确,具体包括以下几点:

  • LLM脆弱且易产生幻觉:即便检索到的上下文中已经包含了正确的答案,LLM在生成响应时仍可能出错,尤其当需要对上下文中的不同事实进行综合推理时,容易导致不准确的输出。

  • 检索到的上下文可能不完整:由于搜索不够理想、文档分块或格式不佳,或知识数据库中缺少必要的信息,检索的内容可能无法提供准确答案。在这种情况下,LLM依然会尝试回答问题,导致幻觉般的错误响应。

尽管有些人将“幻觉”一词专门用于某些类型的LLM错误,但在本文中,我们将其与“错误响应”视为同义词。对于RAG系统的用户而言,最重要的是答案的准确性以及能否信任系统输出。与评估众多系统属性的RAG基准测试不同,我们专注于研究:当答案不正确时,不同的检测器能多有效地提醒用户。

RAG系统的答案可能因检索或生成过程中出现的问题而错误。我们的研究重点是生成过程中的问题,特别是源于LLM本身不可靠性的情况。

解决方案:幻觉检测方法

假设现有的检索系统已经获取了与用户问题最相关的上下文,我们会考虑使用算法来检测何时不应信任基于此上下文生成的 LLM 响应。这种幻觉检测算法在医学、法律或金融领域的高风险应用中至关重要。

除了标记不可信的响应以进行更仔细的人工审查之外,此类方法还可用于确定何时值得执行更昂贵的检索步骤(例如,搜索其他数据源、重写查询等)。

第一种:自我评估(“自我评估”)是一种简单的技术,要求 LLM 评估生成的答案,并以 1-5 的等级(李克特量表)对其置信度进行评分。我们利用思维链 (CoT) 提示来改进这项技术,要求 LLM 在输出最终分数之前解释其置信度。

以下是使用的特定提示模板:

Question: {question}  问题:{question}``Answer: {response} 答案:{response}

评估给定答案对问题的回答是否良好且准确时,请根据以下 5 分制进行打分。

第二种:G-Eval(来自 DeepEval 包)是一种使用 CoT 自动开发多步骤标准以评估给定响应质量的方法。在 G-Eval 论文(Liu 等人)中,发现该技术与几个基准数据集上的人工判断相关。质量可以通过多种方式来衡量,指定为 LLM 提示,这里我们指定它应该根据响应的事实正确性进行评估。

Hallucination Metric 幻觉指标(来自 DeepEval 包)将幻觉的可能性估计为 LLM 反应与上下文相矛盾/不一致的程度,由另一个 LLM。

第三种:RAGAS 是一个特定于 RAG 的 LLM 驱动的评估套件,提供各种可用于检测幻觉的分数。我们考虑以下每个 RAGAS 分数,这些分数是使用 LLMs估计必要的数量得出的。

第四种:可信语言模型 (TLM) 是一种模型不确定性估计技术,用于评估 LLM。它结合使用自我反思、多个采样响应的一致性和概率测量来识别错误、矛盾和幻觉。以下是用于提示 TLM 的提示模板:

仅使用以下来源的信息回答 QUESTION``CONTEXT: {context}  上下文:{context}``QUESTION: {question} 问题:{question}

对于我们基准测试中的每个用户问题,现有的检索系统会返回一些相关的上下文。然后将用户查询和上下文输入到生成器 LLM(通常与特定于应用程序的系统提示符一起输入)中,以便为用户生成响应。每种检测方法都采用 {user query, retrieved context, LLM response} 并返回一个介于 0-1 之间的分数,表示幻觉的可能性。

所有考虑的幻觉检测方法本身都由 LLM。为了公平比较,我们将这个 LLM为 gpt-4o-mini。

下面描述了每个基准测试数据集和相应的结果。这些数据集源于流行的 HaluBench 基准测试套件(我们不包括该套件中的其他两个数据集,因为我们发现它们的真值注释中存在重大错误)。

总体而言,TLM、RAGAS Faithfulness 和 Self-Evaluation 是检测 RAG 应用中幻觉的更可靠方法。对于高风险应用程序,组合这些方法可以提供最佳结果。

未来的工作可以探索混合方法和有针对性的改进,以更好地对特定用例进行幻觉检测。通过集成这些方法,RAG 系统可以实现更高的可靠性,并确保更准确和值得信赖的响应。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值