在人工智能领域,多模态模型正逐渐成为研究和应用的热点。这些模型不仅能处理文本数据,还能理解和生成图像,为各种应用场景提供了新的可能性。前段时间,Mistral AI 实验室宣布了他们的最新研究成果——Pixtral 12B,这是一个具有里程碑意义的多模态模型,旨在成为Mistral Nemo 12B的直接替代品。本文将深入探讨Pixtral 12B的关键特性、性能表现以及其背后的技术架构。
一、Pixtral 12B 概览
Pixtral 12B,一个真正意义上的多模态AI模型,通过融合图像与文本的训练,展现了处理复杂任务的非凡实力。它在多模态领域的卓越表现,以及在遵循指令方面的灵敏反应,都令人印象深刻。更值得一提的是,Pixtral 12B在文本处理上的精湛技艺,它在保持多模态优势的同时,并未牺牲文本处理的精准度。
关键特性
-
多模态处理能力:Pixtral 12B能够理解自然图像和文档,其在MMMU推理基准测试中达到了52.5%的准确率,超越了许多更大的模型。
-
灵活的图像处理:用户可以以图像的自然分辨率和宽高比输入图像,模型能够灵活处理任意数量的图像。
-
长上下文窗口:Pixtral 12B拥有128K tokens的长上下文窗口,可以处理多张图像。
-
开源许可:Pixtral 12B采用Apache 2.0许可,用户可以在La Plateforme或Le Chat上尝试使用。
二、性能表现
Pixtral 12B在多模态推理方面的表现尤为突出,它在不牺牲关键文本能力(如遵循指令、编码和数学计算)的前提下,提供了最佳的多模态推理能力。在与封闭和更大的多模态模型的比较中,Pixtral 12B在许多情况下都超越了它们。
三、架构亮点
Pixtral 12B的架构是其卓越性能的基石,它包括一个全新的400M参数视觉编码器和基于Mistral Nemo的12B参数多模态解码器。这一设计使得模型能够以原生分辨率处理图像,同时保持快速的推理速度。
1、可变图像尺寸
Pixtral 12B的设计哲学是优化速度与性能的完美结合。它训练了一个新的视觉编码器,原生支持可变图像大小,能够将图像直接转换为模型可以理解的tokens,而无需任何预处理。
2、最终架构
Pixtral 12B由两个核心组件构成:视觉编码器和多模态Transformer解码器。这种架构使得模型能够处理任意数量和大小的图像,同时在128K tokens的大型上下文窗口中保持高效的文本处理能力。
四、定性示例
Pixtral 12B在处理复杂图形、图表理解、多图像指令遵循和图像到代码转换方面都表现出了卓越的能力。例如,它能够根据图表数据列出欧洲GDP最高的五个国家,或者根据图像生成HTML代码。
1、复杂数字的推理
Prompt:
List the top 5 countries in Europe with the highest GDP
Response:
The top 5 countries in Europe with the highest GDP, based on the image, are:
1.Germany
·GDP: $3.99 trillion
·Percentage: 4.65%
2.United Kingdom
·GDP: $2.82 trillion
·Percentage: 3.29%
3.France
·GDP: $2.78 trillion
·Percentage: 3.24%
4.Italy
·GDP: $2.07 trillion
·Percentage: 2.42%
5.Spain
·GDP: $1.43 trillion
·Percentage: 1.66%
These countries are highlighted in green on the diagram.
2、图表理解和分析
Prompt:
When did things start to go wrong for dark dragon?
Response:
The image is a line graph titled ‘train/loss’ that shows the training loss over steps for four different models: dark-dragon-50, dainty-sunset-49, different-haze-34, and morning-field-33. The x-axis represents the steps, ranging from 0 to 60k, and the y-axis represents the loss on a logarithmic scale from 1e-5 to 1e+5.
To determine when things started to go wrong for the dark-dragon-50 model, we need to look at the red line representing this model. Initially, the loss decreases, indicating that the model is learning effectively. However, around the 10k step mark, the loss starts to spike significantly. This spike indicates that the model’s performance is deteriorating. The loss continues to spike and fluctuate, reaching very high values, which suggests that the model is not learning effectively and is likely overfitting or encountering other issues.
Therefore, the critical point where things started to go wrong for the dark-dragon-50 model is around the 10k step mark.
五、如何使用Pixtral?
用户可以通过La Plateforme或Le Chat轻松尝试Pixtral 12B。此外,Mistral AI还提供了`mistral-inference`工具,使得在本地运行Pixtral 12B变得简单。用户还可以选择使用vLLM库来提高服务吞吐量。
1、La Plateforme
Pixtral可以在La Plateforme上使用。你可以利用Pixtral的 通过API调用实现的功能,实现与 各种应用程序和工作流。下面是一个简单的例子。
`curl https://api.mistral.ai/v1/chat/completions \`
`-H "Content-Type: application/json" \` `-H "Authorization: Bearer $MISTRAL_API_KEY" \` `-d '{` `"model": "pixtral-12b-2409",` `"messages": [` `{` `"role": "user",` `"content": [` `{` `"type": "text",` `"text": "What’s in this image?"` `},` `{` `"type": "image_url",` `"image_url": "https://tripfixers.com/wp-content/uploads/2019/11/eiffel-tower-with-snow.jpeg"` `}` `]` `}` `],` `"max_tokens": 300` `}'`
2、mistral-inference
在本地运行Pixtral的最简单方法是使用 mistral-inference。安装 mistral_inference 后,您可以下载模型,加载模型,并使用下面的代码运行模型。
`# download the model`
`from huggingface_hub import snapshot_download``from pathlib import Path`` ``mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral')``mistral_models_path.mkdir(parents=True, exist_ok=True)`` ``snapshot_download(repo_id="mistralai/Pixtral-12B-2409", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)`` ``# load the model` `from mistral_inference.transformer import Transformer``from mistral_inference.generate import generate`` ``from mistral_common.tokens.tokenizers.mistral import MistralTokenizer``from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk``from mistral_common.protocol.instruct.request import ChatCompletionRequest`` ``tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")``model = Transformer.from_folder(mistral_models_path)`` ``# Run the model` `url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"``prompt = "Describe the image."`` ``completion_request = ChatCompletionRequest(messages=[UserMessage(content=[ImageURLChunk(image_url=url), TextChunk(text=prompt)])])`` ``encoded = tokenizer.encode_chat_completion(completion_request)`` ``images = encoded.images``tokens = encoded.tokens`` ``out_tokens, _ = generate([tokens], model, images=[images], max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)``result = tokenizer.decode(out_tokens[0])`` ``print(result)`
3、vLLM推理
如果您选择在本地提供Pixtral,还可以使用 vLLM 框架进行推理,以达到更高的服务吞吐量。下面是一个简单的 用法示例。
`from vllm import LLM`
` ``from vllm.sampling_params import SamplingParams``model_name = "mistralai/Pixtral-12B-2409"``sampling_params = SamplingParams(max_tokens=8192)`` ``llm = LLM(model=model_name, tokenizer_mode="mistral")``prompt = "Describe this image in one sentence."`` ``image_url = "https://picsum.photos/id/237/200/300"`` ``messages = [` `{` `"role": "user",` `"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]` `},``]`` ``outputs = vllm_model.model.chat(messages, sampling_params=sampling_params)``print(outputs[0].outputs[0].text)`
结语
Pixtral 12B的问世,不仅是多模态AI模型的一个飞跃,更是未来人工智能应用的一个风向标。它在多模态任务上的出色表现,以及在文本处理上的顶尖性能,预示着它将在人工智能的舞台上扮演越来越重要的角色。随着技术的不断进步,我们有理由相信,Pixtral 12B将开启一个多模态智能的新纪元。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。