财务数智化 | 场景驱动 融合创新 DeepSeek等大模型技术 推动财务数字化转型实践观察与思考

2025年1月DeepSeek-R1正式发布以来,凭借其推理能力和部署成本优势的特点迅速引起行业重视。DeepSeek-R1在推理、代码生成等领域表现优异,在降低部署成本和训练成本的同时,促进了AI应用商业模式从“算力壁垒”到“场景驱动算法普及”的转变。财务作为企业数据处理和应用的中心,伴随DeepSeek等人工智能产品不断涌现,为智能财务的管理方式和商业模式带来全新的范式。围绕大模型在财务领域的深入应用,学界认为“大模型扩展了财务管理的边界,重构了业财数据的基础”,会进而带动管理数智化革命。但结合近期笔者对多家探索应用DeepSeek等大模型的企业的数智化转型辅导来看,企业在大模型的应用场景、管理应对,甚至是技术原理和数据安全层面还存在较大的认知盲区,本文围绕大模型技术应用原理、实践场景、管理应对,针对近期DeepSeek等大模型热点,以智能财务和软件工程的视角,探讨大模型技术在企业财务数智化转型过程中的路径选择问题。

01.DeepSeek支持财务数智化变革的核心技术优势

围绕大模型技术对财务数智化变革的关键技术的研究,在2024年上海国家会计学院智能财务研究院发布的《人工智能大模型技术财务应用蓝皮书》当中,将其概括为“突出的‘涌现’能力、统一的Prompt交互、高扩展性的应用框架、高成本的训练和推理过程”这四项特征。伴随DeepSeek热度上升,围绕DeepSeek的研究则体现在2025年的北京国家会计学院和中兴新云发布的《财务领域“AI+”,DeepSeek驱动下的财务创新》当中,该报告将其概括为“文本生成、自然语言理解与多模态处理、逻辑推理与数据分析、编程与代码”。同时,围绕其差异化的能力,进一步概括为“算法与系统工程颠覆性创新、全链路成本集约化管理、本地垂直场景适配度更优、促进开源生态与AI普惠化”四项特征。除了整体研究以外,如南京审计大学,在审计领域也专项评估了DeepSeek的V3、R1、Janus-Pro三款模型的适用场景。

对上述应用进化原因的技术归因,则和DeepSeek在强化学习驱动的自我进化、跨行业知识蒸馏与模型压缩以及多模态融合、实时处理能力等关键技术突破相关。此处以笔者近期参与某商业地产DeepSeek应用案例来观察,目前该企业通过借助DeepSeek对租户合同、租金、销售数据的预测,不仅可以准确预测商业地产企业年度租金与应收计划,还可以结合企业掌握的消费数据以及市场舆情进行退租风险提示,甚至可以洞察到承租企业关联方的经营风险进而提供决策预警。在上述场景中,DeepSeek对非结构化数据的处理、风险问题的推理以及社会化大数据的抓取分析能力,为企业在提升应收和风险管理能力的同时,大大降低了信息系统重复开发和数据整合的成本。

02.DeepSeek在财务数智化变革过程中的应用场景分析

鉴于编撰本文时,DeepSeek应用尚处于起步探索阶段。以当前的应用深度划分,目前财务部门围绕DeepSeek等大模型工具的探索基本可以分为三种状态:即个人通过公网或私有化部署对标准功能应用探索、企业已经部署智能体产品解决具体场景问题、围绕近期人工智能技术发展对原有智能应用升级优化。以笔者的实践观察,大部分组织尚处于第一阶段。虽然大模型工具具有极高的智能化水平,但考虑到财务数据安全、数据应用的精确性要求,显然需要将DeepSeek等人工智能模型纳管到企业自身的信息系统当中。但有别于既往对于人工智能应用的推进,在本次DeepSeek的推进过程中,更大程度受到了外部环境影响,推进模式呈现快速推动和自上而下的特征。因此,造成了不少组织忽视了自身应用场景以及既往成熟的其他信息化和智能化工具的“单点突破”局面。

img

DeepSeek在财务应用领域常见场景

如果客观评估DeepSeek对财务数智化变革的推动路径,可以发现其是以场景驱动为核心、以数据为基础,并通过工程化思维整合智能化体系,实现融合创新的过程。

首先,在场景层面,DeepSeek在财务报告、共享财税、管理会计、司库管理、财会监督与风控合规、资产资本管理、财务知识管理以及日常财务报告等领域,都已经进入实质性探索阶段。借助DeepSeek自身强大的建模和推理能力,在报告编写、智能问数等场景方面,大模型技术已经有了显著提升。在财务分析与报告编写场景下,接入DeepSeek-R1之后,在管理报告整合行业知识并按提问者意图拆解以及对于问数场景的推论探索建议方面,大模型在相关性和准确性方面都取得显著变化,以应收账款分析为例,在完成应收账款TOP客商分析之后,可以进而对于客商所处行业、地区、内部签订合同的事业部等重要相关分析维度进行自动推理,为数据决策提供更直观的依据。

其次,在应用整合层面,深入应用DeepSeek等工具的同时,需要考虑与Python、规则引擎、数据中台、虚拟员工等外围智能化工具进行整合应用。以企业财务共享领域应用为例,通过DeepSeek对非结构化数据的处理能力,可以在财务支付等环节对PDF或word格式的电子合同付款条件实现快速文本聚类,从而降低共享支付环节的审核成本,但在支付审核环节,大量的审核规则仍然基于原有共享、司库等系统内的规则,因此需要将DeepSeek等智能工具识别出来的问题与原有审核规则引擎整合应用,避免因新技术的引入给财务处理造成负担。

再次,在应用场景选择层面,智能工具的直接应用价值往往和人工智能应用场景的使用人数、人工单位成本、使用频率以及人工智能工具节省的时间成本这四个变量相关,考虑到财务数据处理的敏感性问题,以及当前对于DeepSeek应用与改造的成本,企业短期内应用主要集中在数据查询、知识检索领域。为了能进一步丰富企业内部场景,在做好数据权限管理和智能体隔离的基础上,可以按照角色、组织、职能等角度探索应用推广模式。在角色层面,如经营决策分析等功能可以率先让领导层面应用,提升对智能化应用的感知,加大智能应用推广力度;在组织层面,可以选择类似共享中心对文本合同聚类、海外财务部对文件翻译等场景,提升单个场景应用价值;在职能层面,可以选择如ESG等尚未有成熟工具支撑的新业务,借助大模型在文字编撰和外部数据加工层面的优势,树立组织内部的创新标杆。进而分别从关键用户、组织以及“爆品”场景的角度统筹推动智能化项目。

最后,在应用规划创新层面,财务人员需要具备工程思维,把DeepSeek纳入组织的“智能工具箱”,结合管理重点、难点、热点,统筹设计数智化应用的最优路径。此处以笔者近期辅导的一家企业为例,该企业为了适应穿透式监管,实现报表、账务、共享、发票和合同等信息的数据核验与分析,希望借助DeepSeek的推理能力完成相关工作。在信息化蓝图评审环节,可以识别出在报表、账务、共享之间借助账表规则引擎和凭证规则引擎是最优的策略,而在合同与共享的部分场景下,适合借助大模型对非结构化数据进行挖掘处理,避免在技术选型环节出现路径错误。此外,对于非标场景处理,大模型需要借助Prompt工程进行微调测试,对于相关测试的封装与版本管理也都有别于传统管理软件开箱即用的思路,对此,也对企业内部财务人员提出全新要求。

03.DeepSeek在财务数智化变革过程中的应用场景分析

DeepSeek等大模型对财务的影响方兴未艾,正逐步进入应用“奇点”阶段,这一方面和DeepSeek自身性能优势相关,另一方面也推动了其他智能工具的开源应用,让大模型逐步进入企业个性化应用阶段。

对此,企业在积极探索DeepSeek场景的同时,还应加强自身的数据治理和智能团队建设,通过组织、文化、技术、数据的协同建设推动企业拥抱智能工具。在企业财务管理当中,可以通过成立AI创新团队、安排定期内部培训的形式加强知识转化。另外,对于组织内部,可以安排每个部门设置一名AI专员,并安排每位专员一段时间专注一项AI工具的方式交叉创新,通过跨部门的场景探索,激发思考,整合蓝图。

围绕DeepSeek的应用创新目前尚处于起步阶段,文章描述的相关实践,除DeepSeek以外,也同步参考了千问等大模型在财务领域的应用,但文章编写亦难免挂一漏万,以偏概全。伴随以DeepSeek为代表的新一代人工智能技术带给管理的冲击和启发已经显露端倪,对当下财务数智化规划与建设产生了显著影响。积极拥抱技术,优化知识结构,借助智能引擎,实现财务管理从事后记录向事中过程管控和事前参与决策进发,推动财务管理职能跃迁。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值