当LangGraph遇上Mem0:如何让你的AI Agent具有更智能的记忆与个性化的体验?

AI Agent(智能体)的记忆(Memory)被认为是一项必备的基础能力,它用来提取、存储会话中的重要信息并用于后续的检索与使用。可以把记忆简单地分成短期记忆与长期记忆两种,用来“记住”不同类型的信息:

短期记忆通常用来缓存一次会话过程的上下文与推理过程;而长期记忆则为AI 智能体提供了持久的重要信息存储与快速检索能力。

目前无论是LangChain/LlamaIndex这样的底层LLM框架,还是一些低代码平台,在短期记忆能力上都有相对完善的解决方案;但在长期记忆能力的实现上则相对不足,特别是更智能的个性化记忆能力

本文介绍一种广受欢迎的AI记忆开源解决方案:Mem0(Mem0背后公司的一款基于Mem0的AI聊天应用获得了OpenAI的投资):

  1. AI应用需要怎样的长期记忆

  2. Mem0是怎么工作的

  3. 用LangGraph+Mem0实现个性化Agent体验

01.AI应用需要怎样的长期记忆

很多时候,我们希望AI应用能够提供一种更个性化的人工智能体验:随着时间的推移,AI能够记住每个使用者的一些独特信息,比如个人资料、专业细节、偏好、个人计划、习惯等,并能够在未来的交互中轻松地检索到这些信息,用来实现更针对性与个性化的AI体验。比如:

  • 个性化的AI学习。记住不同学员的特点与习惯以提供针对性的教学过程。

  • 个性化的AI客户服务。根据客户的历史交互与信息提供更智能的服务体验。

  • 个性化的AI个人助理。根据个人偏好与习惯提供更有吸引力的推荐与帮助。

  • 个性化的AI医疗咨询。根据咨询者的信息、病史、用药等做更精准的诊断。

注意这些信息需要在跨越多用户、多次会话、甚至多个AI应用时保留与检索。

除此之外,参考人类的记忆习惯,我们还希望AI的长期记忆能够:

  • 智能记忆:并非简单对话历史的存储,而是智能的理解、提取与记住重要信息与相关事实。

    比如:从一次旅游规划对话中识别客户偏好的酒店类型、出行习惯。

  • 自适应学习:随着用户的不断使用与交互,能够持续提高个性化信息的丰富性与准确性。

    比如:在多次对话中不断完善对客户信息与画像的了解。

  • 动态更新:根据新的交互信息动态更新记忆内容。

    比如:在对话中识别出使用者的工作发生了变化,需要更新之前的记忆。

  • 更准确的检索与响应:优先考虑最近最相关的记忆信息,及时忘记过时信息,以提供更准确的个性化上下文。
    比如:回忆最近一段时间的客户用餐爱好,并做针对性推荐。

以上这些能力要求,也正是Mem0已经具备的核心特性。

02.Mem0是怎么工作的?

简单地说,Mem0就是为基于LLM的AI应用而设计的独立记忆层。通过它可以帮助AI应用实现跨应用持久、智能、自适应与动态的长期记忆与回忆能力,以用来实现真正的个性化AI体验。

Mem0的主要构成与工作方式用下图表示:

  • Mem0提供了简单的记忆管理API用来集成到你自己的AI应用

  • Mem0借助LLM与嵌入模型来智能的生成与更新记忆,并实现语义检索

  • Mem0的后端需借助向量数据库或者图数据库来组织、存储与检索记忆

以Mem0简单的增加记忆(add方法)为例,其核心处理过程大致为:

可以看到,Mem0借助了LLM来实现对记忆事实的提取,并能够根据新的交互信息来动态更新历史记忆,以保留最新的个性化记忆,并遗忘无用的记忆。由于借助了LLM,因此提示词就显得非常重要。如果你需要定制自己的记忆提取的提示词,可以在创建Memory对象时,设置custom_prompt参数。

03.用LangGraph+Mem0创建个性化体验的AI Agent

现在,让我们来创建一个具有个性化记忆能力的AI Agent,相对LangChain框架中的记忆组件,Mem0提供了更强大与智能的另外一种选项。

这里仍然用之前我们演示使用的智能体:一个带有网络搜索功能的简单对话机器人。但这次我们增加了长期记忆选项,用来实现跨多次会话、多用户甚至多Agent的个性化交互能力。工作流程如下:

【创建记忆】

创建一个Mem0的Memory对象,向量数据库使用嵌入式的Chroma,LLM使用OpenAI的gpt-4o-mini模型(OpenAI的Key在环境变量配置):

from mem0 import Memory  
from typing import Annotated, TypedDict, List  
from langgraph.graph import StateGraph, START, END  
from langgraph.graph.message import add_messages  
from langchain_openai import ChatOpenAI  
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage  
from langchain_community.tools.tavily_search import TavilySearchResults  
from langgraph.prebuilt import ToolNode  
  
#个性化长期记忆,采用chrona向量库存储  
mem0 = Memory.from_config({  
    "version":"v1.1",  
    "llm": {  
        "provider": "openai",  
        "config": {  
            "model": "gpt-4o-mini"  
        }    },  
    "vector_store": {  
        "provider": "chroma",  
        "config": {  
            "collection_name": "chat_memory",  
            "path": "./db",  
        }  
    }  
})

【创建LangGraph工作流与Agent】

定义LangGraph中的节点行为,最后创建工作流,并添加节点与边。这里针对Mem0的主要修改集中在chatbot这个节点方法中。简单解释如下:

  • 为了区分不同用户的记忆,会在state中保留一个mem0_user_id。在添加记忆或者检索记忆时都需要携带这个user_id。(在实际应用中,这个id很可能是你的某个客户ID)

  • 在chatbot回复之前,先根据输入消息内容检索关联的个性化记忆(search),并把检索到的记忆组装成System Message。(这是一个常见的优化点,即如何检索出更相关的记忆,可以参考RAG优化中的一些方法)

  • System Message与用户消息一起作为上下文输入给LLM,从而在生成响应时,大模型能够根据个性化的记忆作出响应。

  • 在本轮交互结束后,调用add接口将该用户的本次对话信息添加到记忆中。Mem0会自动识别和合并,以用于下次检索。

#定义LangGraph的State  
class State(TypedDict):  
    messages: Annotated[List[HumanMessage | AIMessage], add_messages]  
    mem0_user_id: str  
  
# 调用搜索引擎的工具节点,利用ToolNode构建  
tools = [TavilySearchResults(max_results=1)]  
tool_node = ToolNode(tools)  
  
#定义chatbot节点  
def chatbot(state: State):  
    messages = state["messages"]  
    user_id = state["mem0_user_id"]  
  
    # 取出关联的个性化记忆,并组装成context,放在system message中  
    memories = mem0.search(messages[-1].content, user_id = user_id)["results"]  
    context = "历史对话中的相关信息有:\n"  
    for memory in memories:  
        context += f"- {memory['memory']}\n"  
    system_message = SystemMessage(content=f"你是一个乐于助人的客户支持助手。利用所提供的上下文来个性化你的回复,并会记住用户的偏好和过去的交互。\n{context}")  
  
    # 组装消息,并调用LLM(注意绑定tools)  
    full_messages = [system_message] + messages  
    llm = ChatOpenAI(model="gpt-4o-mini") .bind_tools(tools)  
    response = llm.invoke(full_messages)  
  
    # 记住本地对话的信息  
    mem0.add(f"User: {messages[-1].content}\nAssistant: {response.content}", user_id=user_id)  
    return {"messages": [response]}  
  
# 一个辅助方法:判断是否需要调用工具  
def should_continue(state):  
    messages = state["messages"]  
    last_message = messages[-1]  
  
    #根据大模型的反馈来决定是结束,还是调用工具  
    if not last_message.tool_calls:  
        return "end"  
    else:  
        return "continue"  
  
# 定义一个graph  
workflow = StateGraph(State)  
workflow.add_node("llm", chatbot)  
workflow.add_node("search", tool_node)  
workflow.set_entry_point("llm")  
  
# 一个条件边,即从agent出来的两个分支及条件  
workflow.add_conditional_edges(  
    "llm",  
    should_continue,  
    {  
        "continue": "search",  
        "end": END,  
    },  
)  
  
# action调用后返回agent  
workflow.add_edge("search", "llm")  
graph = workflow.compile()

【测试Agent的记忆能力】

准备如下的简单测试代码:

if __name__ == "__main__":  
    print("AI: 你好!有什么可以帮助你?")  
    mem0_user_id = "testuser"  # You can generate or retrieve this based on your user management system  
    while True:  
        user_input = input("输入: ")  
        if user_input.lower() in ['quit', 'exit', 'bye']:  
            break  
  
        config = {"configurable": {"thread_id": mem0_user_id}}  
        state = {"messages": [HumanMessage(content=user_input)], "mem0_user_id": mem0_user_id}  
  
        response = graph.invoke(state,config)  
        print("AI: ",response["messages"][-1].content)

我们首先做一些简单的交互对话,试图让Agent产生一些“记忆”:

这里的会话中传递了一些个性化的信息:最近爱看足球、不喜欢坐飞机、对历史文化名城感兴趣等。

现在让我们退出,然后重新启动应用,并开始新的对话:

可以看到,AI知道你最近对足球比赛感兴趣,并进行了推荐。继续上面的对话:

没错,AI也了解你对历史文化名城感兴趣,所以做了更贴心更针对性的规划。

注意,这里Agent的记忆是和user_id相关的(测试代码中为testuser),如果你更换这个user_id,那么将不会获得之前testuser的记忆信息,而会重新开始创建新的用户记忆。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值