问答数据的特殊性
首先我们想一下问答数据的特殊性有哪些?与普通文档不同,问答数据有其独特的结构和价值。每组问答都包含一个问题和对应的答案,形成了一个完整的信息单元。这种结构化的特点,使得问答数据在构建RAG系统时具有独特的优势:
- 问题部分通常直接反映了用户的实际需求
- 答案部分往往是经过提炼的高质量信息
- 问答对之间存在明确的对应关系,便于检索和匹配
问答数据构建RAG的关键策略
一、数据入库策略:完整性vs.颗粒度
在实践中,关于问答数据是否需要切分,存在不同观点:
完整保留策略:直接将问答对作为一个完整单元入库,不进行切分。这种方法保证了QA的完整性,适合标准化的FAQ场景。
文档1:
{
"问题": "如何重置密码?",
"答案": "您可以通过以下步骤重置密码:1.点击登录页面的'忘记密码'链接......"
}
细粒度切分策略:将较长的问答内容切分成更小的片段。这种方法可能提高检索的灵敏度,但可能破坏QA的完整性。
文档1-1:
{
"问题片段": "如何重置密码",
"答案片段": "您可以通过'忘记密码'链接重置密码"
}
文档1-2:
{
"问题片段": "重置密码的步骤",
"答案片段": "1.点击'忘记密码'链接 2.输入您的注册邮箱..."
}
实践建议:
- 对于简短、明确的FAQ,建议直接完整入库
- 对于复杂、冗长的QA,可考虑切分,但需确保切分不破坏语义完整性
- 在生产环境中进行A/B测试,比较两种策略的效果
二、索引构建策略:以问题为中心
与普通文档RAG不同,问答数据的RAG系统应该"以问题为中心"进行索引构建:
-
问题向量化:将问题部分作为主要索引内容进行向量化
# 伪代码示例 for qa_pair in qa_dataset: question_embedding = embedding_model.encode(qa_pair["question"]) doc_id = vector_db.add_document( embedding=question_embedding, metadata={ "question": qa_pair["question"], "answer": qa_pair["answer"] } )
-
双重索引:同时为问题和答案建立索引,但在检索时主要依靠问题相似度
# 伪代码示例 question_embedding = embedding_model.encode(user_query) similar_docs = vector_db.search( embedding=question_embedding, search_field="question", # 指定在问题字段搜索 top_k=5 )
-
混合检索:结合向量检索和关键词检索,提高召回质量
# 伪代码示例 vector_results = vector_db.vector_search(user_query, top_k=3) keyword_results = vector_db.keyword_search(user_query, top_k=3) final_results = merge_results(vector_results, keyword_results)
三、检索和生成策略
基于问答数据的RAG系统,检索和生成策略也需要特殊设计:
- 相似问题检索:用户的查询与问题库中的问题进行相似度匹配
- 上下文组装:将检索到的问答对组织成LLM可用的上下文
- 灵活生成:根据检索结果的质量决定LLM的生成自由度
# 伪代码示例
def generate_answer(user_query):
# 检索相似问题
similar_qas = retrieve_similar_questions(user_query)
# 根据相似度评分决定策略
if max_similarity_score > 0.85:
# 高相似度:直接使用现有答案
return format_existing_answer(similar_qas[0])
elif max_similarity_score > 0.6:
# 中等相似度:基于现有答案生成
context = format_context(similar_qas)
return llm.generate(prompt=f"基于以下内容回答问题:{context}\n问题:{user_query}")
else:
# 低相似度:LLM发挥更多创造性
context = format_context(similar_qas)
return llm.generate(prompt=f"参考以下可能相关的内容,创造性地回答问题:{context}\n问题:{user_query}")
实际应用中的优化技巧
1. 数据质量优先于数量
在RAG系统中,数据质量远比数量重要。对于问答数据,可以采取以下措施提高质量:
- 对问题进行标准化,减少表达差异
- 确保答案内容准确、简洁、全面
- 定期更新陈旧的问答内容
- 删除重复或高度相似的问答对
2. 元数据增强
为问答对添加丰富的元数据,可以显著提升检索效果:
{
"问题": "如何申请退款?",
"答案": "您可以在订单详情页面点击'申请退款'按钮...",
"元数据": {
"类别": ["售后服务", "退款"],
"适用产品": ["实体商品", "数字产品"],
"更新时间": "2023-12-01",
"问题别名": ["怎么退款", "退款流程", "钱怎么退"]
}
}
这些元数据可以用于:
- 问题扩展和增强
- 多维度过滤检索结果
- 结果排序和重排序
3. 用户反馈闭环
建立有效的用户反馈机制,持续优化系统:
- 记录用户是否采纳了系统的回答
- 收集用户对回答的评价
- 分析未能有效回答的问题,及时补充相关QA
- 根据用户实际查询构建新的问答对
常见问题与解决方案
问题:如何处理一个问题有多个子问题的情况?
解决方案:可以采用层级结构组织问答数据,主问题与子问题建立关联关系。检索时先匹配主问题,再根据需要引入相关子问题。
{
"主问题": "如何使用会员积分?",
"主答案": "会员积分可用于商品抵扣、兑换礼品等多种用途...",
"子问题": [
{
"问题": "积分如何兑换商品?",
"答案": "在商品页面选择'积分支付'选项..."
},
{
"问题": "积分有效期是多久?",
"答案": "普通会员积分有效期为一年,金卡会员积分永久有效"
}
]
}
问题:问答数据量大但质量参差不齐怎么办?
解决方案:实施数据分层策略,建立核心问答库和扩展问答库两层结构。核心库包含高质量、高频问答;扩展库包含低频或质量一般的问答。检索时优先从核心库获取结果,核心库无满足结果再检索扩展库。
技术选型建议
构建基于问答数据的RAG系统,可以考虑以下技术组合:
- 向量数据库:Milvus、Marqo、Weaviate等
- 嵌入模型:可选择专为问答优化的嵌入模型,如BGE中文嵌入或BERT-QA系列模型
- 大语言模型:根据具体需求选择适合的LLM,国产模型如文心一言、智谱AI等在中文问答场景表现良好
- 检索框架:LangChain、LlamaIndex等提供了丰富的检索工具
结语
问答数据是构建RAG系统的优质材料,其自带的问题-答案结构天然适合检索增强生成的应用场景。通过合理的数据处理、索引策略和检索生成方法,可以充分发挥问答数据的价值,构建出响应迅速、答案精准的智能问答系统。
记住,RAG系统没有一劳永逸的解决方案,需要根据具体业务场景不断调整和优化。持续收集用户反馈,迭代改进索引和检索策略,才能打造出真正实用的智能问答系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。