训练数据 training data
定义:
用于训练机器学习模型的输入数据样本子集。
GB/T 41867-2022
训练数据 (Training Data): 用于训练模型的数据集,使模型学习数据中的模式。
ChatGPT
import numpy as np``X_train = np.array([[1, 2], [2, 3], [3, 4]])``y_train = np.array([0, 1, 1])
测试数据 test data
测试数据 (Testing Data): 用于评估模型性能的数据集,模型在训练时未见过。
X_test = np.array([[4, 5], [5, 6]])``y_test = np.array([1, 1])
验证数据 validation data
验证数据 (Validation Data): 在训练过程中用于调整模型参数的数据集,帮助避免过拟合。
X_val = np.array([[1, 3], [2, 2]])``y_val = np.array([0, 1])
评价数据
定义:
用于评估最终机器学习模型性能的数据。
GB/T 41867-2022
评价数据 (Evaluation Data): 用于最终评估模型的性能,通常是测试集或专门划分的评估集。
# 模型训练和评估的示例``from sklearn.model_selection import train_test_split``from sklearn.linear_model import LogisticRegression``X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])``y = np.array([0, 0, 1, 1, 1])`` ``#划分数据集``X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4)``X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)`` ``model = LogisticRegression()``#训练模型``model.fit(X_train, y_train)`` ``print(model.score(X_test, y_test)) # 评价数据的性能``
注1:测试数据与训练数据、验证数据无交集。
注2:验证数据与测试数据是不重复的,通常也与训练数据不重复。但是,在没有足够的数据进行三种方式的训练、验证和测试集拆分的情况下,数据只被分成两个集——一个测试集和一个训练或验证集。交叉验证或自助法是用于从训练或验证集中生成单独的训练和验证集的常用方法。
注3:验证数据用于调优超参数或验证某些算法选择,直至在专家系统中包含给定规则的效果。
二、理解与复述
在机器学习中,训练数据、测试数据、验证数据和评价数据是用于****构建、评估和优化模型的关键组成部分。
1. 训练数据 (Training Data)
-
训练数据是用于训练机器学习模型的数据集。这些数据包含特征(输入)和标签(输出)。
-
通过训练数据,模型可以学习如何将输入映射到输出,从而捕捉数据中的模式。
-
训练数据的使用通常是通过模型的拟合过程,将数据传递给算法,使其更新内部参数。
-
训练数据是模型学习的基础。训练数据的质量和数量直接影响模型的性能。
2. 验证数据 (Validation Data)
-
验证数据是用于调整模型参数的数据集。在训练过程中,模型未见过的部分数据。
-
通过使用验证数据,可以监控模型的性能,以避免过拟合(即模型在训练数据上表现很好,但在新数据上表现不佳)。
-
在每个训练周期结束后,使用验证数据来评估模型性能,并根据结果调整模型超参数。
-
验证数据有助于在模型完全训练完成之前进行调整和优化,提高模型的泛化能力。
3. 测试数据 (Testing Data)
-
测试数据是完全独立于训练过程的数据集,用于最终评估模型的性能。
-
测试数据帮助评估模型在真实世界场景中的泛化能力,确保模型能够处理未见过的数据。
-
训练和验证后,使用测试数据来计算模型的最终性能指标,如准确率、精确率等。
-
测试数据提供了模型在未见过的数据上的表现情况,是评估模型泛化能力的关键。
4. 评价数据 (Evaluation Data)
-
评价数据通常是测试数据的一部分,专门用于评估模型性能的最终结果。
-
确保模型在实际应用中能够提供可靠的输出,是评估模型的重要步骤。
-
在模型训练和验证完成后,使用评价指标对测试数据的预测进行评估。
-
评价数据提供了模型在实际应用中可能遇到的数据上的性能指标,是模型部署前的最后一步评估。
在实际应用中,数据集通常被划分为以下部分:
训练集:用于训练模型。
验证集:有时与训练集一起使用,用于模型选择和超参数调整。
测试集:完全独立于训练过程,用于最终评估模型的泛化能力。
三、代码示例
用一个使用Python的scikit-learn库来实现逻辑回归分类器的代码作为示例。
# 导入numpy库,并给它取一个别名np,这样在代码中就可以用np来引用numpy库的函数和方法。``import numpy as np``# 从scikit-learn的model_selection模块导入train_test_split函数,用于将数据集划分为训练集和测试集。``from sklearn.model_selection import train_test_split``# 从scikit-learn的linear_model模块导入LogisticRegression类,用于创建逻辑回归模型。``from sklearn.linear_model import LogisticRegression``# 从scikit-learn的metrics模块导入accuracy_score和classification_report函数,用于评估模型性能。``from sklearn.metrics import accuracy_score, classification_report``# 创建一个特征数组X,包含8个二维点,每个点有两个特征值。``X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9]])``# 创建一个标签数组y,包含8个标签,0和1分别代表两个不同的类别。``y = np.array([0, 0, 0, 1, 1, 1, 1, 1])``# 使用train_test_split函数将数据集划分为训练集和临时集(这里临时集包括验证集和测试集)。``# test_size=0.2表示临时集占总数据集的20%。``# random_state=42是一个随机种子,确保每次划分的结果都是一样的。``X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)``# 再次使用train_test_split函数将临时集划分为验证集和测试集。``# test_size=0.5表示测试集占临时集的50%,也就是总数据集的10%。``# random_state=42同样确保每次划分的结果一致。``X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)``# 创建一个LogisticRegression模型实例。``model = LogisticRegression()``# 使用fit方法训练模型,传入训练集的特征和标签。``model.fit(X_train, y_train)``# 使用模型的predict方法在验证集上进行预测。``val_predictions = model.predict(X_val)``# 使用accuracy_score函数计算验证集上的准确率。``val_accuracy = accuracy_score(y_val, val_predictions)``# 打印验证集上的准确率。``print(f'Validation Accuracy: {val_accuracy}')``# 使用模型的predict方法在测试集上进行预测。``test_predictions = model.predict(X_test)``# 使用accuracy_score函数计算测试集上的准确率。``test_accuracy = accuracy_score(y_test, test_predictions)``# 打印测试集上的准确率。``print(f'Test Accuracy: {test_accuracy}')``# 使用classification_report函数生成一个分类报告,包括主要的分类指标,如精确度、召回率、F1分数等。``print("Classification Report:\n", classification_report(y_test, test_predictions))
代码执行结果如下:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。