从智能体到多智能体系统:一种能力框架

在文献中,对于什么是AI智能体并没有明确且一致的定义。本文不旨在定义何为AI智能体,而是关注从基本数据处理到复杂自主决策能力范围内的AI智能体。这一框架允许我们探讨AI智能体在不同复杂性水平上的演进,强调每个阶段的核心特征、功能和区别。

第1级:感知与数据处理
在基础层面上,重点在于AI智能体处理感官数据(图像、文本、音频等)并提取计算特征的能力。衡量标准包括识别准确率、精确度、召回率和效率。由于此阶段仅涉及个体的数据处理能力,因此多智能体因素未被考虑在内。

第2级:推理与问题解决
这一阶段的重点在于个体智能体的逻辑推理、推断和结构化问题解决能力。关注的任务包括执行算法、在约束条件下寻找解决方案以及在明确环境中的优化结果。除非任务明确需要智能体间的交互,否则多智能体系统在此阶段不相关。

第3级:学习与适应
此层级涉及个体智能体通过监督学习、无监督学习或强化学习等方式随着时间推移提高表现的能力。虽然个体学习仍是主要优先事项,但在特定场景中(例如游戏模拟或共享环境)可能会出现协作学习或竞争适应,但这只是例外而非核心特征。

第4级:上下文感知
智能体必须理解并适应其周围环境,包括空间、时间和社交维度。当智能体共享动态环境时(如机器人或自主导航系统),多智能体因素开始在此类场景中显现,这需要相互感知,但不一定需要全面协作。

第5级:自主性和决策
在这个阶段,智能体通过在动态环境中独立做出决策来展示其自主性。在分散系统中,多智能体因素出现在个体决策可能会影响或依赖于其他智能体的情况下。例如,供应链管理等分布式系统可能需要智能体在没有中央控制的情况下自主协调行动。

第6级:协作与协调(引入多智能体系统)
这是多智能体系统成为主要关注点的第一个层级。智能体为了实现共同目标而协作,这需要交流机制、任务分配和冲突解决机制。此层级评估智能体集体工作的效果,平衡个体和群体目标。衡量标准包括团队效率、对智能体故障的稳健性以及智能体间合作的质量。

第7级:沟通与互动
评估智能体有效沟通、解读意图和保持上下文相关性的能力。当智能体需要分享信息、谈判或解决冲突时(如群体智能或分布式规划系统),多智能体因素变得尤为重要。

第8级:创造力和创新
创造力涉及产生新颖且有价值的输出,如设计新的解决方案或策略。在多智能体系统中,创造力可能涉及协作导致的创新行为。然而,此层级也可以单独评估个体智能体,因此多智能体动态取决于具体情境。

第9级:伦理与价值一致性
评估智能体采取行动与伦理原则和社会规范保持一致的能力。在多智能体系统中,确保集体行为符合伦理约束,如公平性、偏见缓解和隐私保护。

第10级:通用智能
这一层级对应于通用人工智能(AGI),在此层级中,智能体能够像人类一样灵活地跨不同领域执行任务。当通用智能出现在协作工作的智能体系统中时,多智能体因素适用,但个体AGI智能体也可以独立运作。

第11级:自我提升与元学习
在这个终极层级,智能体展示出提升其架构、学习策略和操作方法的能力。如果智能体共同改进其算法,多智能体系统可能发挥作用,但重点在于个体和系统的自我提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值