SToRM:通过时空因子表示增强股票交易策略,实现16%的性能提升[付开源代码]

论文 | STORM: A Spatio-Tem)poral Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading

代码 | https://github.com/DVampire/Storm

一 本文概要

本文研究了金融交易中的因子模型,因子模型在资产定价和捕捉定价错误带来的超额收益中广泛应用。传统的变分自编码器(VAE)基础的潜在因子模型虽然能够自适应地学习潜在因子,但在捕捉个股的时间模式和因子表示的多样性方面存在不足。为了解决这些问题,作者提出了一种基于双向量量化变分自编码器的时空因子模型,命名为SToRM。SToRM从时间和空间两个视角提取股票特征,通过细粒度和语义层面的融合与对齐,将因子表示为多维嵌入。离散代码本通过聚类相似的因子嵌入,确保因子的正交性和多样性,从而提高因子的质量和模型的鲁棒性。通过在两个股票数据集上的投资组合管理和六个特定股票的个体交易任务上的实验,SToRM展示了其在下游任务中的灵活性和优越性,在股票未来收益预测任务中,SToRM在SP500和DJ30数据集上相较于六种基线方法分别实现了16.105%和16.399%的平均性能提升。

二 背景知识

2.1 因子模型

因子模型是金融领域广泛研究的对象,金融专家从宏观经济、市场变化、个股基本面等多个角度精心选择因子,以期通过这些因子解释资产的超额收益。例如,著名的Fama-French三因子模型在资本资产定价模型(CAPM)的基础上,引入了额外的因子来捕捉不同类型股票的风险溢价。随着金融理论的发展,研究人员不断发现新的因子,促进了对市场动态的更全面理解。近年来,潜在因子模型通过自适应地学习潜在因子,提升了投资回报。然而,这些基于VAE的模型在处理低信噪比市场时的鲁棒性不足,且主要关注横截面因子,忽视了时间维度的因素,限制了其在时间序列预测中的有效性。

2.2 金融交易

金融交易吸引了金融和人工智能社区的广泛关注。量化交易者利用数学模型和算法自动识别交易机会。在金融科技领域,研究任务包括投资组合管理(PM)、算法交易(AT)、订单执行和做市等。投资组合管理旨在优化资产间的财富分配,已经从简单的基于规则的方法发展到使用机器学习和深度学习预测收益或价格走势的方法。尽管近年来强化学习在PM中的应用有所增加,潜在因子模型仍依赖深度学习进行市场建模和精确预测。算法交易则利用算法生成的信号进行金融资产交易,近年来以强化学习方法为主导,因其在复杂的序贯决策中的优越性。

2.3 向量量化变分自编码器

向量量化变分自编码器(VQ-VAE)在深度学习的多个领域取得了显著进展,特别是在表示学习、生成建模和时间序列分析方面。VQ-VAE通过量化观测数据为离散的令牌序列,展示了其在处理高维数据(如图像、音频和视频)方面的卓越能力,特别强调学习离散的潜在表示。此外,VQ-VAE在处理复杂的时序依赖数据方面表现出色,推动了在时间序列分析中的鲁棒生成模型的发展。

三 本文方法

本文提出的SToRM模型基于双向量量化变分自编码器(VQ-VAE)框架,旨在从时间和空间两个视角学习潜在因子。SToRM通过多维嵌入表示因子,以捕捉金融数据的复杂性和非线性,提升因子对收益的解释能力。此外,双VQ-VAE架构同时捕捉横截面和时间序列特征,并在细粒度和语义层面对这些特征进行融合与对齐,以构建有效的因子。为了确保因子嵌入的多样性和独立性,SToRM引入了多样性损失和正交性损失,确保因子之间的正交性和多样性,从而增强因子的区分能力和在金融交易中的选择性。

3.1 双VQ-VAE结构

双VQ-VAE架构通过在时间和空间两个模块中对股票数据进行分块处理,分别提取时间序列(TS)和横截面(CS)特征。这些特征随后通过可学习的代码本进行聚类,以实现量化表示。编码器采用堆叠的Transformer块,能够捕捉复杂的时间序列和横截面模式,提升特征提取的准确性和鲁棒性。代码本的构建包括一个可学习的嵌入空间,用于将编码后的特征量化为离散表示。

3.2代码本构建与优化

在训练过程中,连续的潜在特征通过最小化欧氏距离映射到代码本中的最近邻嵌入,从而将编码特征转化为离散的令牌序列。这一过程利用有限的向量集合捕捉复杂的模式。为了促进代码本向量的均衡使用,SToRM引入了多样性损失,通过最大化软最大分布的熵,确保代码本的每个向量被均衡利用。此外,正交性损失被用于确保因子之间的独立性,避免多重共线性的问题,增强模型在不同市场条件下的适应性和因子在下游投资任务中的有效性。

3.3 因子模块

因子模块通过特征融合与对齐,将时间序列和横截面的潜在特征集成在一起,生成因子嵌入。特征融合采用交叉注意力机制,在细粒度层面增强特征间的互动与融合,提升模型对输入数据的动态理解。同时,利用对比学习在语义层面增强特征表示,确保相似特征在嵌入空间中聚集,不相似特征则被推远。通过先验-后验学习结构,因子模块在训练阶段利用真实的未来收益预测后验分布,并在推理阶段仅依赖潜在因子嵌入计算先验分布,以避免未来信息泄露,优化因子嵌入的预测能力。

四 实验分析

4.1 实验设置

本文在两个美国股票市场(SP500和DJ30)上进行了实验,使用涵盖2008年至2024年的股票日数据,包括基于Alpha158的技术特征。数据集按时间顺序划分为训练集(2008-04-01至2021-03-31)和测试集(2021-04-01至2024-03-31)。实验评价指标包括六个金融指标,涵盖盈利、风险调整后的盈利和风险,分别用于投资组合管理(PM)和算法交易(AT)任务。为了评估因子的质量,采用了Rank信息系数(RankIC)和RankIC的信息比率(RankICIR)。

4.2 实验结果

4.2.1 因子质量的性能

在股票未来收益预测任务中,SToRM在SP500和DJ30数据集上相较于六种基线方法分别实现了16.105%和16.399%的平均性能提升,表明其学习到的潜在因子在捕捉股票价格趋势方面具有显著的有效性和鲁棒性。通过代码本的嵌入使用频率分布分析,结果显示因子选择过程中的多样性良好,代码本嵌入的使用较为均衡。此外,不同代码本规模的实验表明,512的代码本规模在因子预测性能上表现最佳。

4.2.2 下游任务的性能

在投资组合管理和算法交易任务中,SToRM在盈利、风险调整后的盈利和风险三个方面均优于基线方法。在投资组合管理任务中,SToRM在APY和ASR指标上分别比最佳基线方法提高了106.10%和58.64%,在算法交易任务中,SToRM在三个股票上的APY比最佳基线方法提高了10.45%。这些结果表明SToRM在实际投资中具有出色的回报与风险平衡能力。

4.2.3 消融实验

通过对SToRM的简化版本(仅提取横截面因子和仅提取时间序列因子)进行消融实验,结果表明同时考虑时间序列和横截面因子能够显著提升模型的性能。在股票收益预测任务中,SToRM相较于简化模型在RankIC和RankICIR指标上分别提升了21.73%和24.54%。在PM和AT任务中,SToRM不仅在盈利能力上优于简化模型,而且在风险控制方面表现更佳,进一步验证了结合时间序列和横截面因子的必要性。

五 总结展望

本文提出了一种基于双向量量化变分自编码器的时空因子模型SToRM,能够同时从时间序列和横截面两个视角学习潜在因子。SToRM通过确保因子的正交性和多样性,提升了因子的选择性和预测能力。在股票收益预测、投资组合管理和算法交易等多个任务中,SToRM表现出显著优于现有方法的性能,证明了其在金融交易中的有效性和鲁棒性。未来的研究将考虑引入更多的辅助信息,如新闻数据,以探索外生因子的影响,进一步提升模型的预测能力和应用范围。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值