关于RAG应用中怎么高质量的进行数据召回——召回策略的研究

RAG技术的核心原理很简单,本质上就是在外部维护一个资料库,在进行大模型问答之前,先从资料库中找到相关的内容,然后一起输入到大模型中。

但由于文档的复杂性,在进行文档处理时很难真正做到高质量的数据处理;因此,在做数据召回时就会面临着各种各样的问题。

所以,怎么进行高质量的数据召回,就成为RAG必须要研究的一个课题;而今天,我们就来简单介绍一下常见的几种召回策略。

图片

召回策略

RAG的难点主要有两个,一个是前期的文档处理;其次就是数据的召回;由于大模型本身无法分辨输入到模型中的文档质量,因此关于数据的召回只能进行人为的控制,而人为控制的方法只能通过技术手段来进行约束。

因此,在不考虑前期文档处理的情况下,RAG应用中最重要的一点就是解决数据召回的问题。

召回的本质其实很简单,就是快速准确地从外部资料库中找到与问题相关的数据;比如说,用户的问题是怎么学习人工智能?

然后就需要从大量的外部数据中快速找到与人工智能相关的内容,包括,书籍,视频,论文等多种不同的形式。

举例来说,以目前世界上现存的知识体系为例;涉及的领域没有一千也有八百;而一个人不可能什么领域都能涉及,什么领域都懂;因此,如果有一个人想快速入门一个领域应该怎么办?

首先,他可以通过互联网搜索任何他想从事的领域的内容资料;但现在的问题是,世界上的资料,文档那么多,搜索引擎怎么知道怎么找到与之相关的数据?

这就是搜索引擎要解决的事情,而RAG需要解决的也是这个事情。

图片

RAG是基于神经网络模型做的语义性检索,因此其与传统的字符匹配方式检索有很大的区别,比较直观的体现就是向量计算;因此基于RAG系统有专门的向量数据库进行向量检索。

当然,并不是说RAG只能使用向量数据库,RAG的本质是快速找到相关数据,但RAG不会在意你的数据是使用向量数据库存储还是传统的关系数据库存储。也就是说RAG和数据持久化是无关的,或者说数据持久化只是RAG的一部分。

召回策略

关于RAG的召回策略有多种实现方式,最简单的就是基于传统的字符匹配和搜索技术,以及目前比较火的语义检索方式——向量计算。

什么是语义检索?

所谓的语义就是指,你不但要听到我所说的话,你还要能听懂我所说的意思。

比如说,问你吃饭了吗?这可能只是一种问候语,也可能是他想请你吃饭,顺便聊聊天,在不同的环境下其语义是不同的。

RAG的主要召回策略有以下几种:

  • 基于传统的字符匹配和分词检索
  • 基于向量计算的语义检索
  • 数据重排技术——Rerank
  • 问题拆分技术
  • 多路召回

图片

基于传统的字符匹配和分词检索

在大模型出现之前,搜索引擎主要采用的就是字符匹配和分词技术;常见的技术载体就是关系型数据库和ES这种分词检索工具。

在某些业务场景下,RAG依然会使用这些技术,原因就在于其技术体系比较成熟,解决方案也比较完善,并且效果也不错。

基于向量计算的语义检索

基于向量计算的语义检索,常见的就是向量数据库或者支持向量计算的传统关系型数据库;其本质是通过Embedding(嵌入)模型,把文本转化成向量,然后通过欧式距离或余弦计算等方式,计算其相似度。

数据重排技术——Rerank

数据重排也是基于向量计算的一种方式,其原理是通过把第一步检索到的结果通过重排技术,找到其“分数”也就是相似度最高的数据。

举例来说,你搜索孙悟空,可能会得到很多与之相关的内容,比如说介绍四大名著的内容,介绍三打白骨精的内容,亦或者大闹天宫的内容;

而你想了解的可能只是大闹天宫,或者三打白骨精,这时介绍四大名著的内容可能就不需要了。

而通过重排序就可以实现召回数据的二次筛选,达到更加精确的数据匹配。

图片

问题拆分技术

问题拆分原理很简单,本质上就是利用大模型来分析你的问题,然后给出几个相似的问题;然后通过这几个相似问题去进行召回,这样就可以提高召回数据的精度。

比如说,用户问题是我想去旅游,你有什么建议吗?

这时大模型就可以根据这个问题帮你拆分几个相似性的问题;比如说,我想去一个风景优美的地方;我想找个地方放松一下心情;亦或者我想去看看祖国的大好河山。

通过问题拆分的方式,用户就可以得到多个相似性的问题,这样就可以从更多的维度去向量数据库或者其它地方召回更多相关的问题;之后再通过重排序技术,来找到其中最相关的内容。

多路召回

多路召回的原理也很简单,就是通过多种不同的策略,或者模型或渠道,检索出多个与之相关的内容;其有点类似于问题拆分的思想,但区别是问题拆分是从问题入手,而多路召回是从检索策略或检索途径入手。

举一个比较形象的例子就是,如果你想了解某个行业;你可以选择从公网上查找数据,也可以选择找专门的行业论坛或社区了解内容;还可以通过找专业人士交谈来了解。

而这种通过多种不同的方式,以及不同的渠道进行数据召回的方式就是多路召回。

图片

当然,召回技术并不仅仅只限于RAG领域,在传统的搜索引擎领域,召回技术同样扮演着重要角色;因此,RAG技术也同样可以应用于搜索引擎领域。

当然,这里仅仅只是介绍一下简单的,比较常见的召回策略;在RAG的具体实践中,在不同的场景下也会存在一些特殊的召回方式和策略;比如说数据分类,建立索引等方式,以及知识图谱等新型技术。

最重要的是,你要理解这些召回方式并不是互斥的;在很多场景下都是把这些策略进行组合使用,以此达到更加精准的召回质量;特别是在大数据量的情况下,完全基于向量相似度计算的方式,其对算力和响应的要求,是不被允许的。

因此,在大数据量的情况下,先进行快速的非精确匹配,然后再进行更加精确的相似度计算是一种常见的召回方式。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值