MAV(Model Activity Visualiser,模型活动可视化工具)是一个开源项目,通过可视化技术展示大型语言模型(LLM)在生成文本时的内部工作活动。MAV 的核心目标是帮助研究人员、开发者以及教育工作者直观地理解 LLM 的行为,特别是在注意力机制和其他内部过程的动态变化上。
它提供一个用户友好的界面,允许用户通过图形化方式观察模型的注意力分布、预测结果以及其他关键指标。MAV 支持多种流行模型,包括 GPT-2、HuggingFaceTB/SmolLM-135M、gpt2-medium、gpt2-large 和 meta-llama/Llama-3.2-1B。对于受限的 Hugging Face 仓库,需通过 huggingface-cli login
登录。
如何使用
MAV 提供了多种使用方式,适合不同需求的用户。
通过 uv
运行(推荐)
uv
是一种现代 Python 包管理工具,推荐用于运行 MAV。步骤如下:
- 安装
uv
(如果未安装)。 - 运行命令:
uv run --with openmav mav
或uv run --with git+https://github.com/attentionmech/mav mav --model gpt2 --prompt "hello mello"
。 - 高级用法示例:
uv run examples/test_vis_train_loop.py
或uv run --with git+https://github.com/attentionmech/mav mav --model gpt2 --num-grid-rows 3 --selected-panels generated_text attention_entropy top_predictions --max-bar-length 20 --refresh-rate 0 --max-new-tokens 10000
。
通过 pip 安装
对于传统安装,可通过 pip 安装:
- 运行
pip install openmav
或pip install git+https://github.com/attentionmech/mav
。 - 安装完成后,命令行运行:
mav --model gpt2 --prompt "hello mello"
。 - 或者在 Python 代码中导入:
from openmav.mav import MAV; MAV("gpt2", "Hello")
。
本地开发
对于开发者希望修改或扩展 MAV,可选择本地开发:
- 克隆仓库:
git clone https://github.com/attentionmech/mav
。 - 进入目录:
cd mav
。 - 安装依赖:
pip install .
。 - 运行类似上述命令,例如
mav --model gpt2 --prompt "hello mello"
。
Jupyter Notebook/Colab
对于交互式环境,可使用 Jupyter Notebook 或 Google Colab:
- 访问 Colab 笔记本,直接在线运行。
- 该方式适合教学演示或快速原型开发,无需本地环境配置。
兼容模型和要求
MAV 支持的模型包括:
gpt2
HuggingFaceTB/SmolLM-135M
gpt2-medium
gpt2-large
meta-llama/Llama-3.2-1B
对于受限模型(如 Llama 系列),需通过 huggingface-cli login
登录 Hugging Face 账户。硬件要求视模型大小而定,小型模型如 GPT-2 可在普通 PC 上运行,而大型模型可能需要 GPU 支持。
以下是使用方法的总结表:
方法 | 命令示例 | 适用场景 |
---|---|---|
uv 运行 | uv run --with openmav mav | 推荐,快速启动 |
pip 安装 | pip install openmav; mav --model gpt2 | 传统安装,代码集成 |
本地开发 | git clone ...; pip install .; mav ... | 开发者,定制需求 |
Jupyter/Colab | Colab 笔记本 | 教学,交互式分析 |
应用场景
MAV 的可视化功能使其在多个领域具有潜在应用价值:
研究
在人工智能研究中,MAV 可用于分析 LLM 的内部机制,特别是注意力机制的动态变化。研究人员可通过可视化观察模型在不同输入下的行为,探索以下问题:
- 注意力分布是否均匀,是否存在偏见。
- 模型生成文本时的预测过程,哪些 token 被优先考虑。
- 模型在长文本生成中的性能瓶颈。
例如,通过设置 --selected-panels generated_text attention_entropy top_predictions
,研究人员可同时查看生成文本、注意力熵和预测结果,辅助论文写作或实验设计。
教育
在教育场景中,MAV 是一个强大的教学工具。教师可通过可视化展示 LLM 的工作原理,帮助学生理解深度学习模型的复杂性。例如:
- 在自然语言处理课程中,展示 GPT-2 如何生成文本。
- 在机器学习课程中,解释注意力机制的作用。
- 通过 Colab 笔记本,学生可交互式操作,增强学习体验。
调试和优化
对于开发者,MAV 是调试 LLM 的利器。通过可视化,开发者可发现模型在生成过程中的异常行为,例如:
- 注意力集中在无关 token 上,可能导致生成质量下降。
- 模型在长序列上的性能下降,需调整超参数。
- 通过自定义插件开发,开发者可扩展功能,满足特定需求。
自定义插件开发
MAV 支持用户开发自定义插件,扩展其功能。例如,通过修改可视化面板,添加新指标如困惑度(perplexity)或生成速度。相关示例在 Colab 插件开发 中提供,适合高级用户。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。