✨ 1: AI reads books
该脚本通过逐页分析PDF书籍,智能提取知识点并生成进度摘要,提升阅读理解。
AI Reads Books
是一个基于 Python 的脚本,旨在针对 PDF 格式的书籍进行智能分析。该脚本逐页处理书籍内容,提取出重要的知识点,并在特定的间隔生成总结。通过这种方法,AI 可以在保持书籍上下文连贯性的同时,更加深入地理解内容。
通过使用 AI Reads Books
,用户能够从阅读中获取有价值的信息,不仅提升了阅读效率,还增强了信息的吸收和理解能力。
地址:https://github.com/echohive42/AI-reads-books-page-by-page
✨ 2: DeepSeek Engineer
DeepSeek工程师是一款强大的编码助手应用,集成DeepSeek API进行用户对话处理和文件操作。
DeepSeek Engineer 是一款强大的编码助手应用,集成了 DeepSeek API,能够处理用户对话并生成结构化的 JSON 响应。通过直观的命令行界面,用户可以读取本地文件内容、创建新文件并实时应用对现有文件的更改。该应用旨在为开发者提供高效的编程支持和文件管理功能。
DeepSeek Engineer 是一款非常适合开发者使用的工具,能够在编码过程中提供高效的支持和灵活的文件操作功能。
地址:https://github.com/Doriandarko/deepseek-engineer
✨ 3: GraphAgent
GraphAgent是一个智能图语言助手,集成图生成与任务执行,优化复杂数据分析与生成任务。
GraphAgent 是一种智能图形语言助手,旨在处理真实世界中结构化(如图连接)和非结构化(如文本、视觉信息)格式的数据。这种工具可用于理解和生成复杂关系的数据,并且能够有效地识别显性图依赖和隐性图增强的语义相互依赖。
地址:https://github.com/HKUDS/GraphAgent
✨ 4: OpenEMMA
OpenEMMA是一个开源的端到端自主驾驶多模态模型,旨在推进自动驾驶研究。
OpenEMMA 是一个开源的多模态模型,旨在实现端到端的自主驾驶运动规划。它基于 Waymo 的自主驾驶模型 EMMA,结合了视觉语言模型(VLMs)如 GPT-4 和 LLaVA 的预训练世界知识,整合文本和前视摄像头输入,从而能够精确预测未来的自我路径点,并提供决策的合理解释。OpenEMMA 的目标是为研究人员和开发者提供可访问的工具,以推动自主驾驶研究和应用的发展。
地址:https://github.com/taco-group/openemma
✨ 5: Orchestra
Orchestra 是一个轻量级开源框架,适用于构建基于大型语言模型的多智能体团队和复杂工作流程。
Orchestra(主框架序列)是一个轻量级的开源代理框架,旨在构建基于大型语言模型(LLM)的工作流和多代理团队。它实现了一种独特的代理编排方法,不仅限于简单的数据路由,而是能够支持复杂的工作流管理。Orchestra 提供模块化的架构,便于扩展和集成,支持动态任务分解与代理协作,显著减少 LLM 的认知负担,同时具有直观的工具定义和可配置的故障保护机制。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。