首个FP4精度的大模型训练框架来了,来自微软研究院!
在相同超参数的设置下,可以达到与FP8以及BF16相当的训练效果。
这意味着所需的存储和计算资源可以更少。
用这种方法训练的模型规模最高可达130亿参数规模,训练Tokens数量也达到千亿级别。
而且用的还不是真·FP4,而是通过FP8来模拟,如果采用真的FP4,效果还能进一步提升。
(注:研究开展时,尚未有原生支持FP4的硬件,故作者通过在FP8的TensorCore上模拟实现)
网友评论说,效率更高质量却没什么损失,FP4真的是个game changer。
还有人说,如果这一发现广为人知,恐怕老黄的股价又要跌了。
当然,因低训练成本而成为当红明星的DeepSeek也被网友cue了一下:
在FP8 TensorCore上模拟FP4
如开头所述,在相同超参数的设置下,作者的方法可以达到与BF16的训练效果。
具体来说,在1.3B、7B和13B的LLaMA模型上,从0到1千万Tokens的训练过程中,作者的FP4训练与BF16的损失曲线基本一致。
在下游任务上,表现同样也和BF16相当。
为了实现FP4精度训练,研究团队采用了定制化的FP4矩阵乘法(GeMM)CUDA内核。
在内核中,作者先用FP16将FP4的A和B矩阵读入共享内存并做相应变换,然后用FP4完成分块矩阵乘法,最后再用FP16对中间结果进行归约,得到FP16格式的输出矩阵。
首先需要确定量化的数据格式,该框架采用了E2M1的FP4格式,即用2位来表示指数,1位表示尾数,外加1位符号位,总共4位。
选择这个格式是为了契合当前主流ML加速芯片的量化计算单元设计。
并且,这个框架对权重矩阵W和激活矩阵A采取了不同粒度的量化策略。
对W做的是列方向(channel-wise)的量化,而对A做的是行方向(token-wise)的量化。
这种量化粒度是与GeMM在硬件上的并行实现方式相契合的,可以在不引入额外矩阵转置操作的前提下,最大化发挥FP4在矩阵乘法上的加速效果。
在模型前向传播开始时,框架对每一个线性层的权重矩阵W和输入激活矩阵A同时进行FP4量化。
量化时,先对矩阵中的数值进行缩放和偏移,将其映射到FP4所能表示的范围内,然后通过查表的方式将其四舍五入到最近的FP4离散值。
由于不同层的数值范围差异很大,所以需要对每一层的权重矩阵和激活矩阵分别确定一个独立的量化范围,即进行逐层的量化参数校准。
这个框架采用的是scale+shift的校准方法,即先用一个缩放因子将数值从原始范围映射到[-1,1],再用一个偏移因子把[-1,1]平移到FP4所能表示的范围。
在反向传播过程中,如果直接对量化后的矩阵求导,则权重矩阵的梯度几乎处处为0,从而无法进行参数更新。
为此,作者提出了一种新颖的可微分梯度估计方法。
它在前向计算时仍然使用硬量化,以保证计算效率,但在反向传播时,用一个连续可微的函数来重新拟合这个量化函数,并求导得到一个对梯度的修正项。
另外在训练过程中,模型的隐层激活分布通常呈现出明显的长尾特征,少数维度上的数值明显偏大,导致出现“离群点”(outlier)。
针对这个问题,作者提出了一种“离群点削峰和补偿”的策略。
具体来说,先在激活矩阵A中,通过分位数检索的方法找出那些幅值最大的离群点,将它们限幅到某一个预设的阈值范围内,得到削峰后的矩阵A_clamped。
然后,再基于原矩阵A和削峰后的A_clamped,构造出一个稀疏补偿矩阵∆A,其中只有那些被削峰的位置是非零的。
此外在部分环节当中,作者还采用了混合精度设计。
比如在梯度通信时采用了FP8,在优化器状态(如动量)的存储时选择了FP16。在系统的其他部分,如非矩阵乘操作的计算、Loss Scaling等,也都采用了FP16。
通过这些混合精度的设计,在保证训练数值稳定性的前提下,尽可能地降低了计算和存储开销。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。