大模型在线辅导小模型,正确率提50%、推理效率涨90%

想一下,一个刚学数学的小学生(小模型SLM),虽然做题快,但遇到复杂问题就容易卡壳。而博士生导师(大模型LLM)知识渊博,但计算成本高。img

论文:Guiding Reasoning in Small Language Models with LLM Assistance
链接:https://arxiv.org/pdf/2504.09923v1

论文的突破点在于:让小学生自己尝试解题,只在关键步骤(比如解方程或逻辑推理)时,导师才出手指导。这种“外挂大脑”模式,就是SMART框架的核心。

小模型自主推理,大模型在错误步骤处介入小模型自主推理,大模型在错误步骤处介入

SMART框架:像老师辅导学生一样工作

三步流程

  • 第一步:小模型自己写解题步骤(比如:“先算加法,再算乘法”)。

  • 第二步:给每一步“打分”——用两种方法:

    • PRM分数:像老师批改作业,直接判断对错;
    • TLC分数:看小模型自己有多自信(比如概率高低)。
  • 第三步:分数低于阈值时,召唤大模型修正这一步。

生成推理路径的概率公式:

简单说,就是每一步都依赖前面的步骤,像搭积木一样。

得分阈值τ:决定是否需要大模型介入的“分数线”。

框架流程图:生成→打分→修正循环框架流程图:生成→打分→修正循环

实验:小模型逆袭,接近大模型水平

论文用500道数学题测试,发现:

  • 单次生成(N=1):SMART让小模型正确率提升10-20%。
  • 多次生成(N=32):小模型能达到大模型90%以上的水平!
  • 越难的题越明显:比如最高难度题(Lv5),小模型正确率从20%飙升至50%+。

不同难度等级下的性能对比表不同难度等级下的性能对比表

关键发现

  • 大模型只需修改约20%的步骤,就能大幅提升效果。img
  • 成本优势:相比全程用大模型,SMART的LLM调用量减少90%。img

未来手机也能跑高级AI?

  • 手机本地运行小模型,遇到复杂问题时联网求助大模型。
  • 既保证响应速度,又降低流量费用。

展望

  • 未来可能结合强化学习,动态调整“辅导频率”。
  • 隐私保护:敏感数据留在本地,只上传必要问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我需要帮助用户了解不同大模型的特点和差异,包括性能、应用场景和优势。首先,我要回顾用户供的引用内容,看看有哪些相关信息可以整合。 引用[1]到了集成学习方法,但用户的问题是关于大模型,所以这部分可能不太相关,不过里面到的性能评估和应用场景可能有参考价值。引用[2]讨论了T5和BERT模型的应用场景对比,特别是命名实体识别任务中的优缺点,这部分内容需要取。引用[3]供了国内主要大模型的对比数据,包括文心一言、通义千问、ChatGLM-4、星火V3.5等的性能指标,如MMLU、C-Eval、推理速度等,这些都是关键点。引用[4]详细描述了DeepSeek系列不同版本的特点和应用场景,参数规模、核心优势、典型应用场景等信息非常详细。 用户的问题集中在各大模型的对比,包括性能、应用场景和优势。我需要将这些信息结构化,可能按模型分类,每个模型下分性能、应用场景、优势三个部分。需要注意使用用户到的模型,如文心一言、通义千问等,以及DeepSeek的不同版本,还有T5和BERT。 同时,用户要求回答中使用中文,数学表达式用$...$,独立公式用$$...$$,但当前问题可能不涉及数学公式,不过如果有参数规模的数据,可能需要用数字表示。另外,需要生成相关问题,放在最后。 需要确保信息准确,引用正确的来源。例如,引用[3]中的性能指标表格,引用[4]中的DeepSeek各版本信息,引用[2]中的T5和BERT对比。 可能需要先概述大模型的分类,再分国内和国外模型,或者按参数规模分。但用户可能更关注具体模型的对比,所以可以列举几个主要模型,分别说明其性能、应用场景和优势。例如: 1. 文心一言 2. 通义千问 3. ChatGLM-4 4. 星火V3.5 5. DeepSeek系列 6. T5和BERT 每个模型下分点说明,同时对比它们的性能指标,如MMLU分数、推理速度等。应用场景需要具体,如金融、医疗、客服等。优势部分要突出各自的特点,比如DeepSeek-R1的多模态处理能力,ChatGLM-4的高推理速度等。 需要检查引用内容是否有冲突或重复,确保信息正确。例如,引用[3]中的性能指标表格,需要正确对应每个模型的分数。引用[4]中的DeepSeek版本参数和应用场景需要准确呈现。 生成相关问题时要围绕大模型的特点、选择建议、性能评估方法、优化方向等,可能需要参考用户之前的问题,但根据当前回答内容生成相关问题。 最后,确保回答结构清晰,使用适当的标题和分段,符合用户要求的格式,如使用中文,正确引用标识等。</think>### 各大模型特点对比(性能、应用场景与优势) #### 一、国内主流大模型对比 1. **文心一言** - **性能**:MMLU(中文)$4.08$,C-Eval $82.18$,代码能力(HumanEval)$5.35$,推理速度$6.778$ tokens/s[^3]。 - **应用场景**:通用对话、知识问答、文本生成。 - **优势**:中文理解能力较强,适合教育、客服等需要高准确率的场景。 2. **通义千问** - **性能**:MMLU(中文)$2.07$,C-Eval $79.88$,推理速度$8.292$ tokens/s[^3]。 - **应用场景**:数据分析、自动化流程、企业级任务。 - **优势**:推理速度快,支持复杂逻辑处理,适合金融风险评估和流程自动化。 3. **ChatGLM-4** - **性能**:MMLU(中文)$76.5$,C-Eval $81.26$,推理速度$105$ tokens/s[^3]。 - **应用场景**:长文本处理、代码生成、多任务并行。 - **优势**:高效处理长上下文,适合代码竞赛、技术文档分析。 4. **星火V3.5** - **性能**:MMLU(中文)$73.4$,C-Eval $78.64$,推理速度$8.985$ tokens/s[^3]。 - **应用场景**:教育辅导、实时信息整合。 - **优势**:数学能力突出,适合教育领域的解题与辅导。 --- #### 二、DeepSeek系列模型对比 | 版本 | 参数规模 | 核心优势 | 典型应用场景 | |--------------|----------|--------------------------------------------------------------------------|----------------------------------| | DeepSeek-R1:1.5B | 1.5亿 | 低资源部署、快速响应 | 简单问答系统、智能助手 | | DeepSeek-R1:7B | 7亿 | 语义理解与多任务平衡 | 客户服务、情感分析 | | DeepSeek-R1:70B | 70亿 | 高精度生成与复杂推理 | 金融分析、医疗诊断 | | DeepSeek-R1:671B | 6710亿 | 多模态交互、前沿研究能力 | 科学研究、跨模态决策优化[^4] | --- #### 三、国际主流模型对比 1. **T5模型** - **性能**:支持多种任务统一框架,生成任务表现优异。 - **应用场景**:文本摘要、翻译、问答系统。 - **优势**:任务灵活性高,适应零样本学习(Zero-shot)[^2]。 2. **BERT模型** - **性能**:上下文理解深度强,适合短文本分类。 - **应用场景**:命名实体识别(NER)、情感分析。 - **局限**:生成任务能力较弱,需微调适配新任务[^2]。 --- #### 四、关键性能指标对比 $$ \text{推理效率} = \frac{\text{处理任务量}}{\text{时间}} \propto \text{tokens/s} $$ - **高速推理**:ChatGLM-4($105$ tokens/s)适合实时交互场景[^3]。 - **高精度生成**:DeepSeek-R1:70B在金融和医疗领域表现突出。 --- #### 五、选型建议 1. **资源受限场景**:选择参数较小的模型(如DeepSeek-R1:1.5B)。 2. **专业领域需求**:优先考虑专用优化模型(如文心一言用于中文客服)。 3. **多模态任务**:DeepSeek-R1:671B或T5扩展版本[^4][^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值