在金庸武侠小说《天龙八部》中,无崖子,作为逍遥派祖师的二弟子,也是逍遥派的第二任掌门。在接任逍遥派掌门后,因各种纠葛,遭到徒弟丁春秋的暗算,被推下山崖,虽侥幸不死,但几乎全身瘫痪,于是摆下珍珑棋局,希望能找到一个有大智慧的人,传下自己的毕生功力和绝学为自己清理门户。
虚竹本是小少林僧人,武功低微且不通棋艺,因机缘巧合下,落下一子,自填一气导致大片白棋被提,意外破解棋局。无崖子看重虚竹的仁厚心性,决定传功。无崖子以逍遥派秘法"北冥神功"为基础,将自身七十余年的内力通过头顶"百会穴"强行灌入虚竹体内。
其他人纵然是好运在身,那也还得经过一番磨难然后才能练就绝世武学,进而走上巅峰,可是虚竹却完全是“平步青云”!他凭空就得到了逍遥派掌门人七十余年的功力!他甚至不需要自己修炼,就得到了无崖子毕生的功力,让他从一个籍籍无名的小和尚一步登天,蜕变为武林中绝顶高手。而且因内力暴涨,虚竹的相貌从原本的平凡变得神采奕奕,从此走上人生巅峰。
深度学习中的“江湖”
知识蒸馏是一种机器学习技术,目的是将预先训练好的大型模型(即 “教师模型”)的学习成果转移到较小的 "学生模型 "中。
在深度学习中,它被用作模型压缩和知识转移的一种形式,尤其适用于大规模深度神经网络。
知识蒸馏的本质是知识迁移,模仿教师模型的输出分布,使学生模型继承其泛化能力与推理逻辑。
最近大火的DeepSeek团队发布的DeepSeek-R1,其670B参数的大模型通过强化学习与蒸馏技术,成功将能力迁移至7B参数的轻量模型中。
蒸馏后的模型超越同规模传统模型,甚至接近OpenAI的顶尖小模型OpenAI-o1-mini。
在人工智能领域,大型语言模型(如GPT-4、DeepSeek-R1)凭借数千亿级参数,展现出卓越的推理与生成能力。然而,其庞大的计算需求与高昂的部署成本,严重限制了其在移动设备、边缘计算等场景的应用。
如何在不损失性能的前提下压缩模型规模?知识蒸馏(Knowledge Distillation)就是解决这个问题的一种关键技。
知识蒸馏的工作原理
知识蒸馏的工作原理可以概括为以下几个步骤,通过这些步骤,我们可以将一个复杂模型(教师模型)的知识有效地迁移到一个简单模型(学生模型)中,以提高学生模型的性能:
-
选择教师模型:首先,选择一个已经训练好的深度学习模型作为教师模型,这个模型通常具有较好的泛化性能和表示能力 。
-
生成软标签:教师模型对训练数据集进行预测,生成软标签(概率分布),这些标签包含了输入数据的丰富信息。
3. 初始化学生模型:接着,选择一个相对简单的模型作为学生模型,并初始化其参数,可以是从教师模型中随机初始化,也可以是使用一些其他策略。
4. 定义损失函数和辅助损失:定义损失函数来衡量学生模型输出和教师模型软标签之间的差异。常用的损失函数包括Kullback-Leibler (KL) 散度和交叉熵。除了模仿教师模型的输出,学生模型还可能需要直接学习真实标签,以确保其准确性。
5. 温度调整:使用温度参数调整软标签的平滑程度,温度较高时,概率分布更加平滑,有助于学生模型学习到更泛化的特征;温度较低时,概率分布更接近真实标签,有助于学生模型学习到更具体的信息。
温度参数调整软标签的平滑程度
6. 优化与评估:使用损失函数指导学生模型的训练。在训练过程中,学生模型尝试模仿教师模型的软标签输出,同时学习如何正确分类训练数据,并不断评估和优化学生模型的性能。
随着AI技术的普及,越来越多的应用场景需要在资源受限的设备上运行高效的模型。如移动设备和嵌入式系统,对计算资源有严格的限制。
大型深度学习模型往往需要大量的计算能力和存储空间,不适合这些环境。
知识蒸馏可以将大型模型中的知识迁移到小型模型,使小型模型在保持较低计算成本(减少标注数据和计算资源需求)的同时,实现接近大型模型的性能。
在需要实时或近实时反馈的应用中,小型模型由于其较低的延迟特性,可以更快地进行推理。
例如,DeepSeek推出的新模型DeepSeek-R1在数学、编程和推理等关键领域的表现能与OpenAI的最强推理模型相媲美,且训练费用仅为OpenAI最新大模型的二十分之一,引发海外AI圈的广泛讨论。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。