我一直认为好的工具和方法可以带来事半功倍的效果,或者有四两拨千斤的功效,因此在GPT出现后,也和不同的专家,企业应用人员探讨可行的应用场景和方式,怎奈应用的门槛比较高,且大量模型只能云端部署,或者只能使用公共服务,这与PLM中的数据高安全保密冲突,因此企业落地比较难。
1月中旬的时候,DeepSeek像春雷爆发,我也在这个时候开始关注,看了很多介绍后,就开始验证可实现功能的能力,结果强大的推理能力的确让我震惊;刚好我这边在分析一个从QFD到DFMEA的课题,我前期个人整理了不少资料,结果使用DeepSeek一搜索,发现输出的很多结果大大超出我搜集素材的完整性;因此,利用春节假期的时间,我就不断的尝试通过修改提示词,看DeepSeek可以给出怎样的回答,真的有太多的惊讶,强大的让不可思议。
发现DeepSeek可本地部署,并且简化的模型对硬件的需求也没有那么高时,假期我也不断找本地部署的方法,且安装了ollama,因笔记本电脑硬件限制,也在下载1.5b的模型尝试(没有部署成功)。4日还和几个PLM从业朋友在讨论基于DeepSeek本地部署情况下,如何将PLM中的数据“喂入”AI,来支撑哪些场景的PLM应用,我们推测,基于DeepSeek等大模型的发展速度,很多PLM功能都可以按“AI+”融合,这会对企业的产品开发过程和知识管理带来巨大的变化。
没想到这两天已经有不少的先行者,已经在PLM中进行了整合。我认真看了也分析了可实现效果,虽然对真在业务中应用的实践能力表示怀疑,但毕竟AI是真正的走进了PLM中。
视频来源于《Teamcenter精益数字化》公众号
图片来源于《华天软件》公众号,在PDM和CAPP中的集成
一个公版的DeepSeek可以有很大的作用,但面对具体的场景,在缺少具体产品开发的数据调整时,输出的数据是比较发散的;因此在考虑本地部署DeepSeek的第一时刻,我就在查找资料,如何将个性化的知识输入到DeepSeek中,然后将DeepSeek调整为企业内专业的知识库;当然我不会开发,所以部署和调整效率很低,不断的验证测试,但还是找到很多可行的方法,尤其是在知识的导入方面,Cerry studio和Anything LLM都是不错的工具。
最近我也在和开发团队沟通这个事情,基于本地部署的DeepSeek,如何导入信息构建可用场景下的知识库,专业人士给我分享了很多关于应用的细节,我也在学习中,这比网上的《DeepSeek指导手册——从入门到精通》更精彩和引起深思。
- 针对PLM中知识的获取和整合
虽然DeepSeek有非常强大的逻辑推理、数据处理和输出能力,但就像考试所有成绩都是80%,无法说优秀和卓越,但要想深入应用必须突破最后的瓶颈,这部分就是与企业所处行业知识的融合、与企业已经存在知识融合,形成有针对性的专业的增强知识库,才能发挥价值(这部分在后面的篇章中也会说明测试中的场景);企业中产品开发的知识大部分都存在PLM等管理系统中,因此必须将PLM的基础数据和业务逻辑与AI本身的逻辑和功能融合,才能实现整合知识的应用;但大部分企业中PLM的知识都在文档中、各种CAD文件、图纸、模型中,这部分对AI工具来说是拦路虎,因此没有结构化的数据对通用AI是无法识别和处理的,如何将企业内产品开发的知识进行结构化,是企业引入AI支撑产品开发时,第一个需要考虑和解决的问题(可参考《[物料生命周期管理分享(八)-物料的知识库沉淀和重用])。
在清华大学元宇宙实验室输出的报告中,将基于AI的知识应用分为三个阶段,即使再AI中输入了大量知识,但是不同的提示语输入,对输出结果会有比较大的影响,因此若使用知识,必须学习提示语,才能召唤法宝。
- 学会正确高效的提示语输入和结果调整
提示语就是如何向AI提出自己的需求,确保AI能理解你的需求,并按照需求输出内容;学会如何提问,有策略的输入提示语,这方面网上已经有大量的资料和教程,很多时候需要自己不断的尝试,针对同一个问题不断变换提问的输入,评估哪一种输出最理想,是要有一个磨合的过程。
因此在AI+时代,在使用AI时,提示词的构建技能就是一项基本能力,需要AI处理不同事物,有不同输入的方法和策略,这方面已经有人对官方的建议和策略进行了总结,包括基本技能和高阶的技能。
但DeepSeek就像一个功能强大的巨兽,我们若在产品开发中使用,除了知识的融入和提示词的学习外,我们还必须进一步对AI有更多探索,结合已经进行的部分知识输入和提示词的学习,我们在进一步验证DeepSeek的功能,以及掌握如何获取API将知识输入到流程中(挑战太大,没有突破)——如下图所示,虽然有部分信息输入,但提示词的稍微偏差,输出结果就会有比较多差异——但企业的应用是规范的,所以如何比较规范的去应用?
在ChatGPT问世时,已经有企业在研究处理需求分析和编写报告,这方面我也在关注(《[从需求管理的规划和落地实践的谈起]》),这个对企业来说也是常见的场景,并且对AI类工具应该是擅长的,所以在DeepSeek中我也进行了验证,如上图,我连续进行了提示,包括获取目前市场上常见扫地机器人充电运行时间,以及增加充电运行时间的$APPEALS和SWOT分析,我们发现即使同样是R1的模型,参数不同,对输出结果也影响比较大,同样的问题,谁能识别哪一个是官方R1输出的,哪一个是我们本地部署输出的结果?对于企业本地部署DeepSeek时,参数量也是能力也是成本,这块如何平衡也是需要考虑的。
针对这块的应用相对比较成熟,但目前我们在探索如何将AI工具嵌入到Office工具中,例如Word和WPS中,确保在写作时,可随时调用助手查询信息,这比baidu和Google强大太多了,即使无法直接使用,参考价值也非常高。
但针对更专业的产品开发过程中的应用,例如公司计划设计一个电抗器,对于经过一年半载学习的工程师很容易知道设计的流程和方法,参考提供的计算模板,可以比葫芦画瓢的进行设计,和专业的工程师就是是否能创新的差异,如图,工程中电抗器设计是比较复杂的,当输入容量需求时,铁芯面积、线圈和温升都是变化的参数,在学校学习时,我们仅了解算法就可以了,但工程应用就不是这样的,例如铁芯的选材,截面形状、散热介质和温控手段都会影响到电抗器设计,即使上述都没有问题,如何计算综合性价比的成本也许是最终影响决策的依据。
带着这个问题,我咨询了DeepSeek(也问了其他AI工具,这方面DeepSeek是强大的),DeepSeek罗列了非常多,这里仅截图了一部分,可以看出覆盖面的确非常全,但仍和实际工程计算的应用差异很多。
在测试过程中,我们也导入了一批不同产品的计算报告,原计划让AI进行计算逻辑学习,但面对复杂的计算公式和过程逻辑处理,即使提示词我们已经写的非常有针对性,但仍然无法获得想要的结果。此外DeepSeek输出的表达方式和我们实际想要的表达方式也存在差异,这里我罗列了一个实际应用的公式和表达方式。
那么在这方面,DeepSeek之类的工具我们到底该怎么应用呢?我想刚开始还是当助手最好,例如我在写一份信号处理的方案,需要知道信号处理时的离散傅里叶变换(DFT)和快速傅里叶变换(FFT),评估在自己应用的场景选择哪一种合适,就可以有针对性的询问DeepSeek,如下图所示,不仅会介绍原理,应用公式,还会有很多推荐场景,当然是否采用,或者到底有多少其他参考的变量和计算,这部分经验和知识,可能短时间,AI并无法超过专业工程师,包括目前在硬件的原理图、Layout设计,3D设计等,这部分仍在探索的前期。
DeepSeek的出现,的确创造了无限的可能,探索也就永无止境,但我们相信:基于DeepSeek等大模型的发展速度,很多PLM功能都可以按“AI+”融合。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。