框架对比分析
- PyTorch
-
官网链接:pytorch.org
-
定位:动态图优先的深度学习框架,以灵活性和研究友好性著称。
-
核心功能:
-
动态计算图(即时执行)。
-
张量计算、自动求导、分布式训练。
-
特点:
-
与Python深度集成,调试便捷。
-
支持GPU加速和混合精度训练。
-
缺点:
-
生产部署需依赖TorchScript/ONNX。
-
训练速度较静态图框架(如TensorFlow)略慢。
-
易用程度:⭐️⭐️⭐️⭐️⭐️(适合快速原型开发)。
-
使用场景:学术研究、模型实验、小规模训练。
-
应用阶段:模型训练与验证。
-
生态:与Hugging Face、ONNX、TensorBoard集成,社区庞大。
-
简单用法:
`import torch model = torch.nn.Linear(10, 2) output = model(torch.randn(3, 10))`
- NVIDIA Triton
-
官网链接:github.com/triton-inference-server
-
定位:高性能AI推理服务器,支持多框架、多硬件部署。
-
核心功能:
-
动态批处理、并发模型执行。
-
支持TensorFlow、PyTorch、ONNX等模型。
-
特点:
-
跨框架和硬件(GPU/CPU/TPU)兼容。
-
集成Kubernetes和Prometheus。
-
缺点:配置复杂,需管理模型仓库和YAML文件。
-
易用程度:⭐️⭐️⭐️(适合生产环境专家)。
-
使用场景:云/边缘推理服务、高吞吐在线服务。
-
应用阶段:模型部署与推理。
-
生态:与NVIDIA生态(TensorRT、CUDA)深度绑定。
-
简单用法:
`docker run --gpus=1 -v/path/to/models:/models nvcr.io/nvidia/tritonserver:24.02-py3 tritonserver --model-repository=/models`
- ONNX Runtime
-
官网链接:onnxruntime.ai
-
定位:跨平台推理加速引擎,支持ONNX格式模型。
-
核心功能:
-
高性能推理(CPU/GPU/FPGA)。
-
训练加速(ORTModule)。
-
特点:
-
轻量级,适合嵌入式设备。
-
与PyTorch/TensorFlow无缝转换。
-
缺点:部分硬件加速器支持有限。
-
易用程度:⭐️⭐️⭐️(需熟悉模型转换)。
-
使用场景:跨平台部署、边缘设备推理。
-
应用阶段:模型推理与轻量化训练。
-
生态:微软主导,与Azure云服务集成。
-
简单用法:
`import onnxruntime as ort sess = ort.InferenceSession("model.onnx") outputs = sess.run(None, {"input": input_data})`
- Transformers(Hugging Face)
-
官网链接:huggingface.co/transformers
-
定位:NLP预训练模型库,覆盖文本生成、分类等任务。
-
核心功能:
-
提供BERT、GPT等模型的微调接口。
-
支持PyTorch、TensorFlow、JAX。
-
特点:
-
API设计简洁,模型库丰富。
-
支持快速迁移学习和部署。
-
缺点:大模型显存占用高。
-
易用程度:⭐️⭐️⭐️⭐️⭐️(开箱即用)。
-
使用场景:NLP任务开发、快速原型验证。
-
应用阶段:模型微调与推理。
-
生态:Hugging Face Hub(数千预训练模型)。
-
简单用法:
`from transformers import pipeline classifier = pipeline("text-classification", model="distilbert-base-uncased") result = classifier("I love using Transformers!")`
- Accelerate(Hugging Face)
-
官网链接:huggingface.co/docs/accelerate
-
定位:简化分布式训练的工具库。
-
核心功能:
-
自动化多GPU/TPU配置。
-
混合精度训练支持。
-
特点:
-
无需修改代码即可扩展训练规模。
-
与DeepSpeed兼容。
-
缺点:功能较基础,复杂场景需结合其他工具。
-
易用程度:⭐️⭐️⭐️⭐️(快速上手)。
-
使用场景:单机多卡/多节点训练。
-
应用阶段:模型训练。
-
生态:Hugging Face生态核心组件。
-
简单用法:
`accelerate config # 配置分布式环境 accelerate launch train.py # 启动训练`
- DeepSpeed(Microsoft)
-
官网链接:deepspeed.ai
-
定位:大规模模型训练与推理优化库。
-
核心功能:
-
ZeRO内存优化、梯度累积。
-
支持万亿参数模型训练。
-
特点:
-
显存优化显著,适合超大模型。
-
提供推理加速工具(如DeepSpeed-Inference)。
-
缺点:配置复杂,学习曲线陡峭。
-
易用程度:⭐️⭐️⭐️(需分布式知识)。
-
使用场景:千亿级模型训练(如GPT-3)。
-
应用阶段:训练与推理优化。
-
生态:与PyTorch、Hugging Face集成。
-
简单用法:
`import deepspeed model_engine, optimizer, _, _ = deepspeed.initialize( model=model, optimizer=optimizer, config="ds_config.json" )`
- Megatron(NVIDIA)
-
官网链接:github.com/NVIDIA/Megatron-LM
-
定位:超大规模语言模型训练框架。
-
核心功能:
-
模型并行、流水线并行。
-
Transformer架构极致优化。
-
特点:
-
专为NVIDIA GPU集群设计。
-
支持混合精度和梯度检查点。
-
缺点:仅支持NVIDIA硬件,封闭性强。
-
易用程度:⭐️⭐️(需定制开发)。
-
使用场景:千亿参数级模型训练。
-
应用阶段:大规模训练。
-
生态:NVIDIA专用工具链(CUDA、A100/H100)。
-
简单用法:
`python -m torch.distributed.launch pretrain_gpt.py --tensor-model-parallel-size 4 --pipeline-model-parallel-size 2`
- PEFT(Parameter-Efficient Fine-Tuning)
-
官网链接:github.com/huggingface/peft
-
定位:大模型高效微调工具库。
-
核心功能:
-
LoRA、Prefix Tuning等微调技术。
-
减少可训练参数至1%-10%。
-
特点:
-
资源需求低,适合单卡微调。
-
与Transformers无缝集成。
-
缺点:部分技术可能影响模型性能。
-
易用程度:⭐️⭐️⭐️⭐️(API简洁)。
-
使用场景:大模型领域适配(如医疗、金融)。
-
应用阶段:模型微调。
-
生态:Hugging Face生态扩展。
-
简单用法:
`from peft import LoraConfig, get_peft_model peft_config = LoraConfig(r=8, lora_alpha=16) model = get_peft_model(model, peft_config)`
- torchrun(PyTorch)
-
官网链接:pytorch.org/docs/stable/elastic/run.html
-
定位:PyTorch分布式训练启动工具。
-
核心功能:
-
自动化多节点训练配置。
-
支持弹性训练(节点动态扩缩容)。
-
特点:
-
替代
torch.distributed.launch
,更简洁。 -
缺点:功能较基础,需配合其他工具。
-
易用程度:⭐️⭐️⭐️(需分布式知识)。
-
使用场景:多机多卡训练任务。
-
应用阶段:模型训练。
-
生态:PyTorch原生工具链。
-
简单用法:
`torchrun --nproc_per_node=4 --nnodes=2 train.py`
- Unsloth
-
官网链接:github.com/unslothai/unsloth
-
定位:大模型高效微调框架。
-
核心功能:
-
显存优化,训练速度提升2-5倍。
-
支持LoRA等高效微调技术。
-
特点:
-
兼容Hugging Face模型,无需修改架构。
-
缺点:社区较新,文档较少。
-
易用程度:⭐️⭐️⭐️⭐️(API友好)。
-
使用场景:资源受限环境下的微调。
-
应用阶段:模型微调。
-
生态:与Hugging Face兼容。
-
简单用法:
`from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained("unsloth/llama-2-7b")`
- vLLM
-
官网链接:github.com/vllm-project/vllm
-
定位:大模型高吞吐推理引擎。
-
核心功能:
-
PagedAttention技术优化KV缓存。
-
连续批处理和量化支持。
-
特点:
-
吞吐量比Hugging Face提升24倍。
-
支持张量并行和流式输出。
-
缺点:仅支持Transformer架构模型。
-
易用程度:⭐️⭐️⭐️(需CUDA环境)。
-
使用场景:高并发在线服务(如ChatGPT类应用)。
-
应用阶段:模型推理。
-
生态:与Hugging Face模型兼容。
-
简单用法:
`from vllm import LLM llm = LLM(model="meta-llama/Llama-2-7b-hf") outputs = llm.generate(["Hello, my name is"])`
- Ollama
-
官网链接:ollama.ai
-
定位:本地大模型部署工具。
-
核心功能:
-
本地运行LLaMA、Mistral等模型。
-
提供CLI和API接口。
-
特点:
-
轻量级,无需云服务。
-
支持多平台(Mac/Linux/Windows)。
-
缺点:模型支持范围有限。
-
易用程度:⭐️⭐️⭐️⭐️⭐️(一键运行)。
-
使用场景:本地开发测试、隐私敏感场景。
-
应用阶段:模型部署与推理。
-
生态:活跃的开源社区。
-
简单用法:
`ollama run llama2 # 下载并运行模型`
- llama.cpp
-
官网链接:github.com/ggerganov/llama.cpp
-
定位:本地CPU/GPU推理引擎。
-
核心功能:
-
模型量化(GGUF格式)。
-
低资源推理。
-
特点:
-
无需GPU,内存效率高。
-
支持Metal(Apple Silicon)和CUDA。
-
缺点:仅限推理,不支持训练。
-
易用程度:⭐️⭐️⭐️(需编译和量化模型)。
-
使用场景:边缘设备部署、移动端推理。
-
应用阶段:模型推理。
-
生态:广泛支持第三方客户端(如LMStudio)。
-
简单用法:
`./main -m models/llama-2-7b.Q4_K_M.gguf -p "Hello"`
- Ray Serve
-
官网链接:docs.ray.io/en/latest/serve/
-
定位:可扩展模型服务化框架。
-
核心功能:
-
多模型组合、自动扩缩容。
-
支持A/B测试和复杂流水线。
-
特点:
-
与Ray生态(数据处理、训练)无缝集成。
-
缺点:学习成本较高。
-
易用程度:⭐️⭐️⭐️(需熟悉Ray API)。
-
使用场景:云原生模型服务、实时推理流水线。
-
应用阶段:模型部署与服务化。
-
生态:Ray生态的一部分,支持多框架。
-
简单用法:
`from ray import serve @serve.deployment class MyModel: def __call__(self, request): return "Hello World!" serve.run(MyModel.bind())`
- Xinference
-
官网链接:github.com/xorbitsai/inference
-
定位:企业级大模型推理平台。
-
核心功能:
-
多后端支持(vLLM/GGML)。
-
模型量化、分布式推理。
-
特点:
-
开箱即用,支持WebGUI和REST API。
-
集成多模态模型(图像、语音)。
-
缺点:社区较新,文档较少。
-
易用程度:⭐️⭐️⭐️⭐️(一键部署)。
-
使用场景:企业级模型服务、多模态应用。
-
应用阶段:模型部署与推理。
-
生态:与ModelScope社区集成。
-
简单用法:
`xinference-local --host 0.0.0.0 --port 9997 # 启动服务`
综合对比
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。