谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

AI规划与推理

Agent这两天随着邀请码进入公众视野,展示了不凡的推理能力。然而,当面对需要精确规划和深度推理的复杂问题时,即使是最先进的LLMs也常常力不从心。Google研究团队提出的PlanGEN框架,正是为解决这一挑战而生。

PlanGEN不仅仅是另一个AI框架,它是一场范式转变——通过多智能体协作、约束引导和算法自适应选择,彻底重塑了AI系统解决复杂问题的方式。

核心创新:多智能体协作的力量

PlanGEN的核心在于其独特的多智能体架构,包含三个关键组件:

1️⃣ 约束智能体(Constraint Agent)

  • 角色:问题分析专家

  • 职责:深入解析问题描述,提取关键约束条件

  • 创新点:不仅识别显式约束,还能推断隐含约束

2️⃣ 验证智能体(Verification Agent)

  • 角色:质量评估专家

  • 职责:基于约束条件评估计划质量,分配奖励分数

  • 创新点:提供精确的质量反馈,指导迭代优化

3️⃣ 选择智能体(Selection Agent)

  • 角色:策略决策专家

  • 职责:根据问题复杂度动态选择最佳算法

  • 创新点:实现算法自适应选择,平衡探索与利用

这三个智能体协同工作,形成一个强大的问题解决系统,远超单一LLM的能力。

四种实现:适应不同复杂度的问题

PlanGEN框架提供四种不同的实现,每种都有其独特优势:

🔹 PlanGEN (Best of N):简单高效

PlanGEN (Best of N)框架图

工作原理:同时生成多个完整计划,选择奖励最高的方案。

关键特点

  • ✅ 并行计划生成,全局最优选择

  • ✅ 实现简单,计算开销小

  • ✅ 在NATURAL PLAN基准测试中表现最佳

  • ⚠️ 不适合极其复杂的问题

最佳应用场景:中等复杂度的规划问题,如日历调度任务。

🔹 PlanGEN (Tree-of-Thought):深度推理

PlanGEN (Tree-of-Thought)框架图

工作原理:构建决策树,逐步探索和评估可能的解决路径。

关键特点

  • ✅ 树状探索,步骤级验证

  • ✅ 自适应探索,优先扩展高奖励路径

  • ✅ 能处理需要深度推理的复杂问题

  • ⚠️ 计算开销较大

最佳应用场景:需要多步推理的复杂问题,如数学证明。

🔹 PlanGEN (REBASE):灵活回溯

PlanGEN (REBASE)框架图

工作原理:实现改进的深度优先搜索,允许从次优路径回溯。

关键特点

  • ✅ 回溯能力,避免陷入局部最优

  • ✅ 奖励深度编码,探索-利用平衡

  • ✅ 在OlympiadBench等任务上表现出色

  • ⚠️ 实现复杂,需要精细的奖励设计

最佳应用场景:具有复杂约束和多个可行解的问题。

🔹 PlanGEN (Mixture of Algorithms):智能适应

工作原理:根据问题特性动态选择最适合的算法。

关键特点

  • ✅ 自适应算法选择,UCB策略

  • ✅ 实例级适应性,计算资源优化

  • ✅ 在各类任务上表现稳定

  • ⚠️ 实现最复杂,需要额外的选择智能体

最佳应用场景:多样化问题集,从简单到极其复杂。

性能飞跃:多基准测试的显著提升

PlanGEN框架在多个具有挑战性的基准测试中都取得了令人瞩目的性能提升:

在这里插入图片描述

案例研究:智能客服系统的PlanGEN实践

为了展示PlanGEN框架的实际应用价值,修猫以智能客服系统的开发为例,详细说明框架如何在实际项目中发挥作用。

项目背景与需求

该项目旨在开发一个高性能的智能客服系统,核心需求包括:

  • 支持多轮对话,准确理解用户意图

  • 提供个性化的回复

  • 具备知识图谱推理能力

  • 响应时间需控制在100ms以内

  • 支持1000+并发访问

PlanGEN框架的实践应用

在实际实现中,修猫基于PlanGEN框架开发了完整的解决方案,充分利用了框架的多智能体协作特性:

1. 约束分析阶段

约束智能体通过深度分析,提取了多个关键约束:

constraints = {       "功能约束": {           "对话准确率": 0.95,           "意图识别率": 0.90,           "知识覆盖率": 0.85       },       "性能约束": {           "响应时间": "<100ms",           "并发数": ">1000"       }   }
2. 实现亮点
  1. 智能算法选择
class MixtureAlgorithmPlanner:       def _select_algorithm(self, features: ProblemFeatures) -> PlanningAlgorithm:           # UCB策略选择最优算法           ucb_scores = self._calculate_ucb_scores()           # 根据问题特征调整分数           feature_weights = self._calculate_feature_weights(features)           # 返回最优算法           return max(ucb_scores.items(), key=lambda x: x[1])[0]
  1. 约束验证机制
class SolutionVerifier:       def verify_solution(self, solution: PlanSolution) -> bool:           # 验证功能完整性           # 检查性能指标           # 评估资源使用           return all(score >= 0.7 for score in verification_results.values())
3. 实际效果

在这里插入图片描述

关键经验总结

  1. 算法选择的重要性
  • 不同类型的查询适合不同的算法

  • 动态选择显著提升整体性能

  • UCB策略确保稳定性能

  1. 约束驱动的优势
  • 明确的约束指导更精准的方案生成

  • 验证机制确保方案质量

  • 持续优化提升系统性能

  1. 实践建议
  • 根据实际需求选择合适的算法实现

  • 注重约束分析的完整性

  • 重视验证反馈的作用

  • 保持算法选择的灵活性

这个案例充分展示了PlanGEN框架在实际项目中的应用价值。通过多智能体协作和智能算法选择,不仅显著提升了系统性能,还优化了资源利用,为类似项目的开发提供了可借鉴的范例。

AI问题解决的新范式

PlanGEN框架代表了多智能体系统在复杂问题求解领域的重大突破。通过约束引导式迭代验证和实例级复杂度自适应算法选择,它显著提升了LLM在复杂规划和推理任务中的性能。

关键启示:PlanGEN展示了如何通过智能的架构设计和算法选择,而不仅仅是增加模型参数或训练数据,来提升AI系统的问题解决能力。这种方法不仅更加高效,也更具可解释性和可控性,代表了AI系统设计的一个重要发展方向。

对于任何关注AI系统性能和可靠性的研究者和开发者而言,PlanGEN框架提供了一个可扩展、模型无关的解决方案,值得您花点时间测试一下。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值