数字农业 | 43页 | 县域农业大数据运营服务中心平台,实现产业链升级、精准生产助力农业现代化建设

本文主要介绍县域农业大数据运营服务中心相关方案,涵盖系统概述、运营体系、支撑体系和服务体系等内容。旨在通过大数据技术推动县域农业智慧化发展,实现产业链升级、精准生产、农产品可追溯等目标,同时提供全方位服务,助力农业现代化建设。

1. 系统概述

1.1 项目背景

从国家层面看,党的十九大报告强调 “三农” 问题的重要性,大力推进乡村振兴战略。省级层面,全面展开新旧动能转换重大工程,农业 “新六产” 发展拉开序幕,推进农业大数据建设成为推动农业农村现代化、助力 “新六产” 发展和实施乡村振兴战略的关键举措。从地区角度,当地作为农业大市,农产品丰富、品牌众多、数据资源丰富且农业信息化基础良好,具备建设农业大数据的优势,发展农业大数据能在农业竞争中抢占先机,推动农业发展。

图片

1.2 建设目标

  1. 智慧化农业,拉动农业产业链

    :通过采集和分析各类农业数据,优化种养殖结构,实现土地网格化管理,支撑智能化生产,完善监测体系,提升生产管理和指挥调度能力。

  2. 供应链追踪,实现农产品可追溯

    :监管农产品生产流通各环节,提供信息服务,提高资源利用率和流通效率,保障食品安全。

  3. 精准生产,预测市场需求

    :利用大数据采集分析市场,提前规划生产,降低风险,实现供需平衡。

  4. 实行产销一体化

    :将农业生产各环节连接成有机整体,协调控制各要素流动,实现农产品增值和优质优价。

  5. 促进农业管理高效透明

    :推动政府数据开放共享,融合多源数据,建立数据驱动的决策和管理机制,提高农业宏观调控的科学性、预见性和有效性。

    图片

2. 运营体系

2.1 环境因素

利用气象监测仪、土壤检测仪等设备采集气象资源、土地资源、水资源和病虫害信息等环境数据。数据来源包括水利局、农业局、气象局、国土资源局等部门,通过系统接口实现数据交互,为农业生产提供基础环境数据支持。

图片

2.2 种植过程

图片

  1. 种植过程采集

    :围绕种植过程,收集农户、合作社等多方面数据,包括地块信息、采购管理、农事记录等。分析这些数据,为农事活动提供合理建议。

    图片

  2. 设施农业监控

    :部署传感器、控制器和摄像头等物联网设备,实现对农业生产现场的实时监测和异常报警,生产者可远程自动控制相关设施设备,降低生产风险,减少人工成本。

    图片

  3. 水肥一体化智能监控

    :根据土壤水分和作物需肥规律,设置周期性水肥计划,智能硬件自动控制灌溉和施肥的关键参数,提高水肥利用率,改善土壤环境,提升作物产量和品质。

    图片

2.3 养殖过程

图片

  1. 电子养殖档案

    :采集养殖场和养殖户在养殖过程中的投入品使用、动物疫病、畜舍环境等信息,为产品追溯提供基础数据。

    图片

  2. 畜禽养殖智能监测系统

    :通过智能传感器采集养殖环境参数,根据分析结果远程控制设备,实现畜禽养殖环境的智能化控制和精细化管理,减少病害,增加收益。

    图片

2.4 仓储物流

图片

  1. 仓储模块

    :涵盖仓储企业管理、仓库管理、入库管理等功能,实现对仓储环节的全面管理。

  2. 物流模块

    :包括物流企业管理、车辆管理、司机管理和车辆位置跟踪等功能,保障物流运输的高效进行。

  3. 智能仓储系统

    :由多种设备组成智能化系统,采用集成化物流理念设计,实现仓库的信息自动化和精细化管理。

    图片

2.5 其他环节

  1. 食品加工

    :整合企业销售、采购、生产等信息,规范业务流程,提升企业运营效率。

    图片

  2. 农资营销

    :记录农资信息,建立购销台账,实现农资监管。

    图片

  3. 检验检测

    :多部门参与,通过监测车、监测点采集数据,保障农产品质量安全。

    图片

  4. 农业地图

    :利用 GIS 等技术建设农业土地多层地图,展示农用地、水利、农作物种植等信息,为农业资源统计和农机调度提供支持。

    图片

  5. 市场交易

    :整合外贸和内贸数据,实现农产品追溯和市场分析。

    图片

  6. 电子商务

    :推动农产品生产和销售,解决农产品贸易中的问题。

    图片

  7. 农经信息

    :统计乡村合作经济组织的经济情况,为农业发展提供参考。

    图片

3. 支撑体系

3.1 农资监管

构建集申报端、监管端、执法端于一体的综合平台,实现农资定点经营、电子台账管理、农药化肥等农资监管、包装物回收处理以及诚信档案建立等功能,同时通过移动监督检查 APP 加强监管。

图片

3.2 安全追溯

利用区块链、物联网和大数据技术,采集生产和物流环节数据,确保数据不可篡改,保障企业信息安全,实现农产品的全程追溯。

图片

3.3 生产调控

图片

  1. 农产品价格调控

    :通过大数据分析市场需求,提前规划生产,降低生产风险。

  2. 种养殖指导

    :获取实时土壤和环境数据,为种养殖提供精确建议和管理指导。

  3. 种植环境预警调控

    :利用农业大数据平台预报自然灾害,提前做好防范措施。

3.4 数据应用

图片

  1. 种养殖结构分析

    :优化种养殖结构,发展特色产业。

  2. 种养殖过程监管

    :建立监管和追溯体系,对接市场,拓宽销售渠道。

  3. 决策分析调控

    :预测市场需求和价格走势,保障农产品生产与流通。

3.5 产权管理

实现八类产权的流转交易,建设信用管理系统,提供产权抵押融资服务,促进农村产权市场的发展。

图片

3.6 扶贫政策

统计扶贫基础数据和农副产品信息,利用新兴媒体宣传扶贫政策,开展电商扶贫,助力脱贫攻坚。

图片

4. 服务体系

4.1 人工市场

与供销社合作,建设网上为农服务中心,提供用工服务、农机预约和土地托管等服务,构建综合性为农服务体系。

图片

4.2 科技服务

汇聚农业专家资源,搭建农学知识库,提供远程咨询、智能应答等服务,促进农业技术交流和学习。

图片

4.3 金融服务

提供信贷、支付结算和保险等金融服务,降低农贷利率,完善合作保险制度,支持农业发展。

图片

4.4 信用体系

建立市场主体信用档案,整合多部门信用信息,应用于产权抵押等场景,规范市场秩序。

图片

4.5 外贸服务

提供网上洽谈、在线支付、物流外运、安全认证等一系列外贸服务,助力农产品出口。

图片

4.6 双创服务

提供供需发布、融资服务、创业平台等功能,支持农业创新创业。

图片

4.7 电子交易

发布农产品期货、现货交易走势图和价格指数分析,为大宗农产品电子交易提供数据依据。

图片

图片

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值