什么?!
用AI Agent搞的小红书账号,竟然14天狂吸5000粉,还开始赚钱了???
你没看错,这是真事。
据说啊,你只需要跟这个Agent说一个想讨论的话题,例如“怎么选咖啡”、“化妆品成分对比”等等,它就可以自己去小红书、知乎等平台上搜索上百个信源做总结。
而且是可以出一个完整报告的那种,可想而知账号是有多**“高产”**了。
那么这个Agent,到底是何方AI是也?
不卖关子,它就是智谱刚刚发布的新功能——沉思。
简单来说呢,就是它会基于一个开放式的问题,然后一边推理一边搜索超多的信源,最后生成相当完整的内容。
并且它背后的大模型,是智谱自研的推理模型GLM-Z1-Air,性能比肩DeepSeek-R1(但速度是8倍、价格仅1/30)。
所以之前在ChatGPT要花200美元(每月还限120次查询机会)才能搞的事情,智谱沉思功能直接把“壁”给打破了:
免费,无限次!
这还不算完,除了沉思之外,智谱在现场还发布了一个新功能——AutoGLM沉思。
如其名,一切的一切都可以进入**“自动驾驶”模式,是全球首个**集深度研究和操作执行于一体的Agent。
智谱刚刚就用它来了个Live Demo,现场自动接单写稿:
,时长03:43
从演示中可以看到,AutoGLM沉思会让AI会自动打开网站,搜索有偿征稿信息,然后按照征稿要求写出对应的文章,并且自动发送到指定邮箱。
不得不说,现在的AI已经进化到了自己做事、自己赚钱的level了。
这时可能就会有小伙伴问题:沉思和AutoGLM沉思有啥区别呢?
来,一图见分晓:
而且啊,这俩新功能还不是期货,是已经上线的那种。
那么功能实操的效果到底如何呢?我们这就上手试一试。
像人一样操作的AI
正如我们刚才提到的,AutoGLM沉思和目前已有的各家Deep Research相比,最大的区别就是可以边深度思考,边自己动手操作。
因此,接下来我们就来考验一下它的动手能力。
例如行业分析这个比较“大而全”的任务,我们给这样的一段Prompt:
作为科技行业分析师,请完成以下任务:
- 调研2024年AI Agent领域三大趋势(需引用最新论文或权威报告)
- 对比这些趋势与2023年的核心差异
- 根据趋势分析,为初创公司制定一个6个月的AI Agent产品开发路线图 >
要求:数据需标注来源,路线图需包含具体时间节点和资源分配建议。
,时长06:34
可以看到,我们在提交需求之后,鼠标就一直没有动过,全程浏览网页、搜集资料,都是由Agent自己完成。
而且仅仅是不到6分钟,它就完成了搜集资料且输出“6个月的AI Agent产品开发路线图”的任务。
我们可以把结果整理成如下的表格:
嗯,可以说是非常详尽了。
而且这个任务也很好地体现出了AutoGLM沉思在面对多级任务分解、实时数据检索与交叉验证、从分析到执行等能力。
这个例子可以说是对我们打工人、科研党有一定的帮助。
那么下沉到更普罗大众的生活,AutoGLM沉思是否能帮上什么忙呢?
接下来,请听题:
你现在是资深社交策划师,请完成:
- 扫描我的小红书/豆瓣动态,分析我的兴趣标签(如徒步、剧本杀、探店)
- 检索未来3天北京同城活动中匹配度≥80%的活动(优先筛选主办方信誉≥4星的活动)
- 对比各活动的性别比例/费用/交通便利性,生成TOP3推荐清单
- 自动用以下话术私信活动发起人: 『您好!我的用户@RayKim是科技领域爱好者(附用户历史作品链接),希望预留1个名额』
- 若24小时未收到回复,自动切换到备用活动推荐
,时长06:27
这一次,同样是在6分钟以内,我们看到Agent直接是把社交活动推荐到了当下北京最火的中关村论坛。
由此可见,AutoGLM沉思在实时性这块是拿捏住了。
不仅如此,当最fashion的技术碰上玄学,也是有点意思在身上的。
例如下一个实测内容是这样的:
你现在是懂周易的营销专家,帮我策划:
- 分析目标用户画像(25岁女性/信星座/爱买水晶),生成12星座专属的「幸运咖啡」卖点
- 自动制作3种风格的宣传图(星盘/塔罗/八字)并添加文案: 『天蝎座本周喝美式会遇贵人!』
- 在以下时机自动发布小红书:每周一早晨7点(星座运势查阅高峰期);每次水逆开始/结束当天
- 监控评论区,若出现『准吗?』类提问,自动回复: 『扫码测你的专属咖啡运势签→(链接)』
,时长09:49
Agent自己提炼出了星座咖啡这个关键词,搞出了一套12星座专属咖啡卖点的策划设计方案。
除此之外,它还把**“八字”**的元素也融入了进来,结合咖啡元素,通过天干地支和五行生克关系展示星座咖啡的运势。
嗯,确实是有点意思。
怎么做到的?
从上面各种实测结果来看,深度思考+自主执行,或许还只是AutoGLM沉思功能的亮点之一。
因为从具体执行过程中,我们还发现它的操作方式真的非常拟人:
- 模拟人在面对复杂问题时的思考
- 能够像人一样感知这个世界
- 能够像人一样使用工具
除此之外,它还具备四大特性。
一是自主性,它能依靠自己积累的知识还有过往经验,不依赖别人,自己拿主意,然后把想法付诸实践。
二是适应性,它可以一边干事儿一边学,环境咋变它都能跟着变,慢慢让自己变得越来越强、本事越来越大。
三是交互性,就是能跟咱们人类打交道,你有需求了,它就给你提供信息,帮你办事儿。
四是功能性,在某个专门的领域里,它能干特定的活儿,完成特定的任务。
那么如此特性和亮点,智谱又是如何做到的呢?
先说推理模型GLM-Z1-Air。
这可以说是智谱利用扩展强化学习技术,精心训练出来的新一代推理模型。
当碰到又复杂、又开放的难题,它能自己琢磨、反复推敲,给Agent提供较强的推理、规划还有反思的本事。
它的效果跟DeepSeek-R1差不多,但速度快了8倍,价格却只有R1的三十分之一,而且在咱们日常用的消费级显卡上就能跑起来。
而推理模型Z1-Air,则是站在基座模型GLM-4-Air-0414的肩膀上发展起来的。
在前期预训练的时候,这个基座模型融入了大量推理类的数据,后续在对齐阶段,又专门针对智能体的能力进行优化,使得它在代码编写、工具调用等智能体任务方面表现得较为擅长。
在GLM-Z1-Air的基础上,智谱进一步通过强化学习训练出沉思模型GLM-Z1-Rumination,这让模型结合工具使用来完成长程推理的能力得到了提升。
据悉,前面我们提到的和Agent相关的各类模型、技术,智谱都打算在4月14日正式开源。预计在接下来的两周内,这些模型会陆续在Maas平台(bigmodel.cn)上线。
已经开始Next Level了
最后,我们还需要聊一聊一个问题:
AutoGLM沉思的推出,意味着什么?
或许最为直接的感受就是,AI时代的人机交互已经开始有变革的苗头了。
毫不夸张地说,AI已经不再是一个好用的工具,加入了可信的执行能力之后,它摇身一变成为了一个像人一样的智能助手。
而从智谱早期发布的战略脚步来看,现在通往AGI智谱探索到了下一站L3的阶段,开始探索“自主智能体”的下一个阶段。
相信随着技术的不断发展和迭代,AI时代的人机交互,就真的变成了“问一下”就可以的事情,剩下所有内容、工作,统统交给Agent来处理。
除此之外,从行业角度来看,AutoGLM沉思作为全球首个集深度研究和操作执行于一体的Agent,无疑给整个行业带来了新的竞争压力与活力。
不仅是AutoGLM沉思具备够智能的能力,更是在成本上做到了够低,使得Agent能够被大规模应用成为了一种可能,人人触手可及的AI Agent时代或许已经到来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。