本文将分享如何构建一个完整的企业级 Cursor Rules 体系,支持多种编程语言和框架。
企业级 Cursor Rules 架构
企业级环境中,我们采用三层架构来组织 Cursor Rules,确保规则的可维护性和扩展性:
1. 通用规则层(common)
这些规则适用于所有项目,不受编程语言或框架限制:
- general.mdc:项目通用开发规范
- git.mdc:Git提交规范
- gitflow.mdc:GitFlow工作流规范
- document.mdc:文档编写标准
2. 语言规则层(languages)
针对特定编程语言的规则:
- python.mdc:Python编码规范
- typescript.mdc:TypeScript类型系统和最佳实践
- java.mdc:Java编码标准
- golang.mdc:Go语言规范
3. 框架规则层(frameworks)
针对特定框架的规则:
- react.mdc:React组件设计和Hooks使用
- vuejs.mdc:Vue.js组件结构和生命周期
- django.mdc:Django项目结构和视图设计
- flutter.mdc:Flutter UI组件和状态管理
- fastapi.mdc:FastAPI API设计
- nextjs.mdc:Next.js应用结构
- flask.mdc:Flask应用架构
- swiftui.mdc:SwiftUI界面设计
- tailwind.mdc:Tailwind CSS样式指南
规则配置基础
每个规则文件(.mdc)应包含以下核心配置:
---
description: 规则的简短描述
globs: **/*.js, **/*.ts # 适用的文件模式
alwaysApply: false # 是否始终应用
---
- description:规则简要描述
- globs:文件匹配模式
- alwaysApply:
true
(通用规则)或false
(特定语言/框架规则)
规则示例
TypeScript 规则示例
---
description: TypeScript 编码规则和最佳实践
globs: **/*.ts, **/*.tsx, **/*.d.ts
---
# TypeScript 规则
## 类型系统
- 对于对象定义,优先使用接口而非类型
- 对于联合类型、交叉类型和映射类型,使用 type
- 避免使用 `any`,对于未知类型优先使用 `unknown`
- 使用严格的 TypeScript 配置
## 命名约定
- 类型名称和接口使用 PascalCase
- 变量和函数使用 camelCase
- 常量使用 UPPER_CASE
React 框架规则示例
---
description: React 组件模式、hooks 使用方法和最佳实践
globs: **/*.jsx,**/*.tsx
---
# React 规则
## 组件结构
- 优先使用函数组件而非类组件
- 保持组件小巧且专注
- 将可复用逻辑提取到自定义 hook 中
## Hooks
- 遵循 Hooks 的规则
- 使用自定义 hooks 实现可复用逻辑
- 在 useEffect 中使用适当的依赖数组
实用实施指南
在企业环境中实施 Cursor Rules,可采用以下简化步骤:
1. 从核心规则开始
先从最基础的规则集开始:
- 通用规则(general.mdc)
- Git 提交规则(git.mdc)
- 项目主要语言的规则
这样可以快速建立基础,避免一开始就处理过多规则。
2. 使用项目模板
创建包含常用规则的项目模板:
- 前端模板:包含 TypeScript、React/Vue 等规则
- 后端模板:包含 Python/Java/Go 等规则
- 全栈模板:结合前后端规则
新项目可直接从这些模板继承规则,大幅降低配置成本。
3. 采用渐进式集成策略
对现有项目:
- 先实施通用规则
- 按项目技术栈逐步添加语言和框架规则
- 根据团队反馈持续优化规则内容
常见挑战与解决方案
1. 规则冲突处理
问题:不同语言或框架规则冲突 **
**
解决方案:
- 建立明确的规则优先级:框架规则 > 语言规则 > 通用规则
- 在规则中明确标注可能的冲突点
2. 降低维护成本
问题:规则文件数量增多,维护成本上升 **
**
解决方案:
- 采用模块化管理,将相关规则组合成规则包或者适当整合在一起
- 建立核心规则维护小组,负责审核和更新
3. 提高团队接受度
问题:团队成员可能抵触新规则 **
**
解决方案:
- 从小范围试点开始,收集成功案例
- 提供清晰的规则文档和使用指南
- 收集开发者反馈,持续改进规则内容
最后
企业级 Cursor Rules 体系通过三层架构(通用规则、语言规则、框架规则)支持多语言多框架环境,帮助团队提升代码质量和开发效率。关键是采用渐进式方法,从核心规则开始,逐步扩展,并根据实际项目需求持续优化。
随着 AI 编码助手技术的发展,Cursor Rules 将在企业环境中发挥越来越重要的作用,为团队提供更精细的代码生成控制和更一致的开发体验。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。