Agent 互操作性的新时代
AI Agent能够自主处理许多日常重复性或复杂的任务,从而提供独特的机会,帮助人们提高工作效率。如今,越来越多的企业正在构建和部署自主代理,以扩展、自动化和增强整个工作场所的流程——从订购新笔记本电脑,到协助客服代表,再到协助供应链规划。
为了最大限度地发挥代理型人工智能的优势,至关重要的是这些代理能够跨孤立的数据系统和应用程序,在动态的多代理生态系统中协作。即使代理是由不同的供应商或不同的框架构建的,让它们能够相互操作,也能提升自主性,成倍提高生产力,同时降低长期成本。
今天,Google推出一项名为 Agent2Agent (A2A) 的全新开放协议,该协议得到了 50 多家技术合作伙伴的支持和贡献,包括 Atlassian、Box、Cohere、Intuit、Langchain、MongoDB、PayPal、Salesforce、SAP、ServiceNow、UKG 和 Workday;以及包括埃森哲、波士顿咨询公司 (BCG)、凯捷、Cognizant、德勤、HCLTech、印孚瑟斯、毕马威、麦肯锡、普华永道、TCS 和 Wipro 在内的领先服务提供商。**A2A 协议将允许 AI 代理相互通信、安全地交换信息,并在各种企业平台或应用程序上协调操作。**我们相信,A2A 框架将为客户带来显著价值,他们的 AI 代理现在可以在其整个企业应用程序环境中运行。
此次合作体现了对未来的共同愿景:无论采用何种底层技术,人工智能代理都可以无缝协作**,实现复杂的企业工作流程自动化,并推动前所未有的效率和创新水平。**
A2A 是一种开放协议,是对 Anthropic 模型上下文协议 (MCP) 的补充,MCP 为代理提供了实用的工具和上下文。我们借鉴 Google 在扩展代理系统方面的内部专业知识,设计了 A2A 协议,以应对在为客户部署大规模多代理系统时发现的挑战。A2A 使开发者能够构建能够与使用该协议构建的任何其他代理连接的代理,并为用户提供了灵活地组合来自不同提供商的代理的灵活性。至关重要的是,企业可以从一种标准化的方法中受益,用于跨不同平台和云环境管理其代理。我们相信,这种通用的互操作性对于充分发挥协作式 AI 代理的潜力至关重要。
2A 设计原则
A2A 是一种开放协议,它为代理之间协作提供了一种标准方式,不受底层框架或供应商的限制。在与合作伙伴设计该协议时,我们遵循了五项关键原则:
- *拥抱代理能力***:**A2A 致力于使代理能够以自然、非结构化的模式进行协作,即使它们不共享内存、工具和上下文。我们正在实现真正的多代理场景,而不将代理局限于单一的“工具”。
- ****基于现有标准:****该协议建立在现有的流行标准之上,包括 HTTP、SSE、JSON-RPC,这意味着它更容易与企业日常使用的现有 IT 堆栈集成。
- *默认安全***:**A2A 旨在支持企业级身份验证和授权,在启动时与 OpenAPI 的身份验证方案相同。
- **支持长时间运行的任务:**我们设计 A2A 时就考虑到了灵活性,并支持各种场景,使其能够出色地完成各种任务,从快速任务到深度研究,这些任务可能需要数小时甚至数天的时间(如果人工参与)。在此过程中,A2A 可以为用户提供实时反馈、通知和状态更新。
- ****与模态无关:****代理世界不仅限于文本,这就是我们设计 A2A 来支持各种模态(包括音频和视频流)的原因。
A2A 的工作原理
A2A 促进“客户端”代理与“远程”代理之间的通信。客户端代理负责制定和传达任务,而远程代理负责执行这些任务,以提供正确的信息或采取正确的行动。这种交互涉及以下几个关键功能:
- ****能力发现:****代理可以使用 JSON 格式的“代理卡”来宣传其能力,从而允许客户端代理识别能够执行任务的最佳代理并利用 A2A 与远程代理进行通信。
- ****任务管理:****客户端与远程代理之间的通信以任务完成为导向,代理负责执行最终用户的请求。此“任务”对象由协议定义,并具有生命周期。它可以立即完成,或者,对于长时间运行的任务,每个代理可以进行通信,以彼此保持同步,了解任务的最新完成状态。任务的输出称为“工件”。
- ****协作:****代理可以互相发送消息来传达上下文、回复、工件或用户指令。
- ****用户体验协商:****每条消息包含“部分”,即完整形成的内容片段,例如生成的图像。每个部分都有指定的内容类型,允许客户端和远程代理协商所需的正确格式,并明确包含对用户 UI 功能(例如 iframe、视频、Web 表单等)的协商。
真实案例:候选人寻源
通过 A2A 协作,招聘软件工程师的过程可以显著简化。在 Agentspace 这样的统一界面中,用户(例如招聘经理)可以委托其代理寻找符合职位列表、工作地点和技能要求的候选人。然后,代理会与其他专业代理互动,以寻找潜在候选人。用户收到这些建议后,可以指示其代理安排进一步的面试,从而简化候选人寻找流程。面试流程完成后,可以联系另一位代理协助进行背景调查。这只是 AI 代理如何跨系统协作以寻找合格候选人的一个例子。
代理互操作性的未来
A2A 有望开启代理互操作的新时代,促进创新,并创建更强大、更灵活的代理系统。我们相信,该协议将为未来铺平道路,使代理能够无缝协作,解决复杂问题,改善我们的生活。
我们致力于与合作伙伴和社区携手合作,以开放的方式构建该协议。我们将以开源形式发布该协议,并建立清晰的贡献途径。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。