Hugging Face刚刚开源了一个MCP全面指南~

Hugging Face 刚刚推出了 MCP 课程,其中包含需要了解的关于模型上下文协议及其使用方法的一切!
完全免费且开源的课程!从理解 MCP 是什么到连接 LLM,再到部署自己的 MCP 服务器!

img

该课程由以下部分组成:

  • *基础单元:*从理论上学习 MCP概念。
  • 实践:将学习如何使用成熟的 MCP SDK构建应用程序。这些实践部分将提供预先配置的环境。
  • 用例分配:将在其中应用所学的概念来解决您选择的实际问题。
  • 合作:正在与 Hugging Face 的合作伙伴合作,提供最新的 MCP 实施和工具。

无 MCP(M×N 问题)

如果没有像 MCP 这样的协议,开发人员将需要创建 M×N 个自定义集成——每个集成对应一个 AI 应用程序和外部功能的可能配对。

无 MCP

每个 AI 应用程序都需要单独与各个工具/数据源集成。这是一个非常复杂且昂贵的过程,会给开发人员带来诸多不便,维护成本也很高。

使用 MCP(M+N )

MCP 通过提供标准接口将其转化为 M+N 问题:每个 AI 应用只需实现一次 MCP 客户端,每个工具/数据源只需实现一次服务端。这大大降低了集成复杂性和维护负担。

使用 MCP

每个AI应用实现一次MCP的客户端,每个工具/数据源实现一次服务器端。

主机、客户端和服务器

模型上下文协议 (MCP) 建立在客户端-服务器架构上,可实现 AI 模型与外部系统之间的结构化通信。

MCP 架构

MCP 架构由三个主要组件组成,每个组件都有明确的角色和职责:主机、客户端和服务器。

这些功能如何协同工作以实现复杂的交互。下表概述了这些功能、控制者、控制方向以及其他一些细节。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Hugging Face 开源 Llama 模型的介绍、使用与下载 #### Llama 模型概述 Llama 是由 Meta 开发的一系列开源大型语言模型,旨在推动自然语言处理技术的发展。这些模型因其高性能和广泛的适用性而受到研究者和开发者的青睐。通过 Hugging Face 平台,开发者能够轻松访问并利用 Llama 系列模型进行各种任务,例如文本生成、翻译、问答等[^1]。 #### 下载方法 为了从 Hugging Face 平台上获取 Llama 模型至本地环境,有多种方式可供选择: - **使用 `huggingface-cli` 工具** 这是一种简单且高效的命令行工具,用于管理 Hugging Face 上的各种资源。以 Llama 3 模型为例,可以通过以下命令完成下载操作: ```bash huggingface-cli download llama/llama-3 ``` 此外,还可以运行 `huggingface-cli download --help` 来查看更多关于该功能的具体参数选项[^2]。 - **直接加载预训练模型** 如果希望在 Python 脚本中直接加载模型而不单独执行下载步骤,则可借助 Transformers 库实现这一目标。下面是一个简单的代码片段展示如何初始化 Llama 模型及其对应的分词器(tokenizer): ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llama/llama-3") model = AutoModelForCausalLM.from_pretrained("llama/llama-3") ``` #### 微调指南 对于特定应用场景下的需求满足,可能需要对基础版本的 Llama 模型进一步调整优化。Hugging Face 提供了丰富的文档和支持材料帮助用户顺利完成此过程[^3]。具体而言,可以参考官方教程学习如何设置训练脚本以及配置超参数等内容。 #### 高效策略建议 针对可能出现的速度瓶颈或者网络不稳定等问题,在实际操作过程中推荐采用一些高级技巧提升整体效率。比如合理规划存储路径减少重复读写开销;充分利用缓存机制加快后续迭代速度等等[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值