看到一篇字节的AE分离(Attn/MoE)的文章《MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disaggregated Expert Parallelism》 挺有趣的. 但是简单的说字节和NV都还需要技术扶贫….
文章有一个非常简单的叙事, Microbatch, 然后M:N的Attn:MoE配比并配合异构算力来降低成本.
其实本质的问题是, 加大BatchSize后,如果按照DeepEP的方式来看, 显存容量和一些低算力卡(H20)在Attn计算上太慢带来约束, 高算力卡(H800)在小的batchsize下Expert的GroupGEMM计算利用率又太低,显存80GB又比较难拉高batchsize,退而求其次只能选择大规模EP(144/320)并行.
字节的同学提供了一个成本视角核算的表格, 并根据模型推理的算力需求和SLO的需求构建了一套约束搜索算法.
搜索算法倒是很好搞的, 其实很容易的改一下shallowSim就可以算了, 本质上枚举完各种组合下的数据, 然后pandas查表就好
下周有点空了去把GPU参数中增加一个价格参数, 然后再做点性价比的计算就好.
主要难点还是在通信上, 字节把同构的All2All通信变成M:N的Mesh通信,实际上还有很多问题没处理干净. 先来看看字节的说法
首先是通信库的问题, NCCL test为什么比perftest高那么多? 特别是在P99的时候? 其实字节的解释没有抓住最根本的问题, Kingman公式来计算队列延迟才是关键呀. 然后问题定义不清楚的情况下,做了几个优化. 一个是自己搞了一套通信机制
但这样弄远没有DeepEP LL-Kernel那样直接用IBGDA干净呀. 然后针对网络上调整了拥塞控制算法和提高了ACK的优先级? What’s the problem? 其实更直接的叙事应该是引用Kingman公式, 然后想办法在网络上和计算上降低变异系数.
计算上的变异系数控制, DeepEP明显做的更干净, 一个hook函数很快的能够拉起计算就行了, 虽然字节也是类似的优化通过flag来控制.
而网络上,本质就是Mellanox(Nvidia)网卡的设计缺陷, 即便是开了AR还会有几个微秒延迟的上升, 主要是在接收端ReOrder的实现上, DDP的作业抄的不干净…我们在两年前设计eRDMA拥塞控制算法的时候就考虑过AE分离的问题, 因此对接收端的incast情况下的变异系数的考虑远高于带宽利用率, 当然最终的结果是带宽又能打满,变异系数又几乎为0,多路径打开和关闭延迟没区别,甚至开了由于单个QP可以在两个网口上传输延迟更低.
然后在接收端ReOrder设计上规避了RoCE协议的缺陷, 直接用iwarp DDP就很容易解决了呀. 下图eRDMA两年前的benchmark, Nvidia到现在还没追上…
其实还有一个问题是在字节**《MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs》**[2]提到的
Reducing ECMP hashing conflicts
. The conflict probability is reduced as the bandwidth of each uplink is double of that of a downlink. Second, eight 200G NICs on the server is connected to eight different switches in amulti-rail way
.
ECMP hash冲突的问题, 然后当你需要M:N的AE分离时, Multi-Rail way 如何组网呢? 当然钱多换IB, 稍微钱少一点买SP4+BF3开RoCE的AR,但又是Lossless的…
还有一种方案是, 如果给我用BlueField3L的网卡, 可以做一个比较hack的Lossy多路径方案,GPU和BF3L建立一个QP,然后利用BF3的DPA去从多个QP发送, 并且每个DPA Core还需要探测路径上的RTT并更改UDP源端口
但是当M:N部署后, Expert侧会有大量的QP, 而DPA只有那么16个Core和每Core 16个线程, 算力又不够咯. 势必又要在这里引入DCT来解决QPScale的问题, 而eRDMA给用户呈现的128K个QP可以多路径全开,主要是底层完全实现了stateless的subflow, 还有一个根本性的问题是当出现拥塞后, DPA如何做到降速或者是路径切换这个两难的决策问题, 另外接收端如何做到ReOrder buffer free的实现? DPA上不得跨核通信么, 本质的问题是MLNX这群人对内存模型的理解存在很大的问题.
最后扯个淡… 一个月前就预测过NV的股价会到70~80的区间
如今盘后的价格离进入80这个区间就差2块钱了…
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。