LLM训练各种并行策略

1.张量并行(TP)

张量并行,Tensor Parallelism,TP(也有叫Model Parallelism,MP的):LLM中,有的tensor或者layer很大,单卡放不下(或者单卡不够放整个模型),那么就需要用TP把tensor分割成多块,每一块放在一张卡上,分别使用和计算。仅当某些算子需要完整的张量时,才会进行聚合。

1.1.分块矩阵乘法

TP的基本思想是对矩阵乘法进行拆分:

img

那么矩阵乘法有两种拆分方法:(1)对矩阵A按列拆分(上图上)(2)对矩阵A按行拆分(上图下)。

注意,当对矩阵A按行拆分的时候,也要对矩阵X进行列的拆分,保持维度的一致。

当对矩阵A按行拆分的时候,X和A都是concat的关系,backward的时候可以分别计算X拆分出来的小矩阵的梯度,然后再拼接起来就可以得到X的完整梯度。

而当对矩阵A按列进行拆分时,X同时参与了两块GPU上的前向计算,因此X的完整梯度等于两张卡上X的梯度相加。

更加详细的说明可以参考:图解大模型训练之:张量模型并行(TP),Megatron-LM,https://zhuanlan.zhihu.com/p/622212228。

1.2.MLP层的TP

上面展示的是矩阵乘法的TP。那么如果我们的计算不仅是Y=XA,而还有个激活函数呢,比如Y=ACT(XA)。把矩阵A按行切分的方式,需要在进入激活函数的计算前,同步各个GPU得到的Y,这就有不少的通讯量;而把A按列切分的方式则可以直接进行激活函数的计算。

那么再进一步,如果是MLP层,那么Y=ACT(XA)B,在上面的基础上又多了个B矩阵的计算,该怎么切分呢。理想的状况应该是尽量减少计算中的同步操作(从而减少通讯量),提升框架整体的计算效率。

基于前面的分析,我们可以对A按列切割,那么各个GPU得到的Y就是concat的关系,为了和各个小Y能够直接进行计算,那么B应该是按行切分:

img

1.3.Attention的TP

那么多头注意力如何做TP呢?先回顾一下多头注意力的计算,多头注意力本身就对Q、K、V在dim维度做了切分,然后concat起来。也就是说这多个头本身,天然就是可以并行,独立进行计算的。那么只需要把不同的注意力头放到不同的GPU上,我们就得到了多头注意力的TP了。

img

1.4.Embedding层的TP

最后还有embedding层。embedding层的做法是每块GPU维护一份embedding的子集,用id去gather向量的时候,各个GPU上分别获取,对于获取不到的id,则先用特殊向量比如零向量先表示,最后再allreduce各个GPU上的向量,替换掉零向量,就获得了完整的embedding输入了。

2.流水并行

流水并行,Pipeline Parallelism,PP:将网络按层切分,划分成多组,一张卡存一组。

TP是对模型宽度进行切分,而PP是对模型的高度进行切分。

# 假设模型有8层:L0~L7
# 两张卡:GPU0,GPU1
=====================   =====================
| L0 | L1 | L2 | L3 |   | L4 | L5 | L6 | L7 |
=====================   =====================
        GPU0                 GPU1

按这个思路,我们可以直接实现naive PP:假设模型有8层,把模型前4层放在一张卡,后4层放在另一张卡;前向的时候把中间激活数据从GPU0传给GPU1,反向的时候则把数据从GPU1传到GPU0。

naive PP的问题是,当GPU0在跑前向的时候,GPU1是没事干的,反过来也有一样的问题,这就导致GPU有大量的空闲时间在等数据。而且随着PP的GPU数量的提升,这个空闲率就越来越高。比如设置8卡的PP,那么GPU0在做前向计算的时候,GPU1到7都在休息。真所谓是一卡有难,七卡围观。这些GPU的空余等待时间叫bubble。

img

有N张卡的PP,卡的计算利用率就只有1/N。

那么怎么优化PP的GPU利用率呢。

一个自然的想法是,能不能在GPU0算下一个batch的前向数据时,让GPU1在算上一个batch数据的反向呢?是可以的,并且还可以把batch切分成更小的micro-batch,这样就能减少GPU的空闲等待时间。

这就是GPipe。GPipe单个batch进一步拆分为多个Micro-Batch,通过流水线调度不同Micro-Batch的前向和反向计算,减少设备空闲时间。

还有很多别的方案,比如Interleaved Pipeline、1-Forward-1-Backward等,可以看看大佬们的做法。

GPipe的Micro-Batch优化了bubble的问题,那还有显存问题呢。比如GPU1在接收来自GPU0的前向数据时,自己也还有反向传播的中间层数据,这么一来显存就很吃紧了。一个方法就是用activation checkpoint来减少显存的消耗。

实际上个人感觉流水并行是比较复杂的,也有很多不同的实现方法,可以看看框架大佬们的资料。

3.3D并行

3D = DP + TP + PP。

DP是对数据进行切分,TP是对模型宽度进行切分,而PP是对模型的高度进行切分。这三者是可以组合起来使用的。

img

层内使用TP,层间使用PP,多组TP+PP之间使用DP。一般来说DP可以跨机,而TP和PP的通讯更多,应尽量避免跨机。

看下来自Bloom论文的图:

img

每个白色方框表示一块GPU,每组机器有48块GPU,每组都复制了一份模型完整参数。左侧表示数据并行DP,有8组机器,每组输入一批数据;右侧图的竖向示意了PP过程,有12行,模型横跨了这12行GPU,例如模型有48层,则每4层放在一行中;右侧图横向示意了TP过程,一行4块GPU,表示这一行的模型参数被平摊到4块GPU上。

看下DeepSpeed博客的版本:

下图是个三维的3D并行示意图。每种颜色表示一个节点,每个节点有4块GPU。上面16张卡和下面16张卡分别是一组,每组输入一份数据,这是数据并行。上面一组16张卡,假设模型有32 layer,一组GPU中每个节点存放8layer,每个节点的输出作为下一个节点的输入,例如GPU0的输出是GPU8的输入,这就是流水线并行。每个节点执行模型并行,意思是每个layer被分成了4分,放到一个节点的4个卡上。

img

下图是对上图的拓展示意。模型有32 layer,每8个layer放到一个节点,黄色框是一个节点,包含4个GPU。每个节点执行模型并行/张量并行, MP-0、MP-1、MP-2、MP-3表示同一layer中的张量被切分成4份,分别放到4个GPU上。Rank 0 和Rank 1是数据并行。节点之间执行流水线并行,07layer放在第一个节点,以此类推,最后的2431layer放到最后一个节点。

img

4.序列并行

序列并行主要是解决LLM的输入数据长的问题。由于attention的计算复杂度是平方增长,中间激活值的量随着输入输出长度增长而暴增,naive attention实现的情况下,比如10k长度的序列所需的显存是1k长度的100倍。

前面TP和PP都是切模型,而序列并行就是切数据。

主流的实现有这三种,对比一下:

属性Colossal-AIMegatron-LMDeepSpeed-Ulysses
核心目标突破序列长度限制,支持超长序列(如114K Token)减少LayerNorm和Dropout的显存占用,优化张量并行下的显存效率高效支持超长序列(百万Token)和大模型训练,结合ZeRO-3参数分片
通信机制环状通信(Ring Self-Attention),分块传递QKV,All-Gather聚合结果All-Gather和Reduce-Scatter聚合序列分片的中间激活值All-to-All转置QKV矩阵,将序列分片转换为注意力头分片
兼容性兼容数据并行、流水线并行、张量并行主要与张量并行结合使用与ZeRO-3和数据并行结合,支持FlashAttention优化库
无损性验证计算结果与单卡完全一致,实验验证Loss曲线和精度指标无差异分布式与单卡输出的均方误差(MSE)为浮点误差量级(<1e-7)生成文本的困惑度(Perplexity)与单卡一致,数学等价性通过矩阵分块转置严格保证

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 实现LLM多GPU并行计算的关键技术 在大规模语言模型(LLM)的训练过程中,为了充分利用硬件资源并加速训练过程,通常会采用多GPU并行计算的方式。以下是实现这一目标的核心技术和方法: #### 1. **PyTorch Lightning框架的基础** PyTorch Lightning 是一种简化深度学习开发的高级封装工具,它提供了强大的功能来支持分布式训练。通过其模块化的结构设计,开发者可以轻松构建复杂的分布式训练环境[^1]。 - `LightningModule` 提供了一个统一接口用于定义模型及其优化器逻辑,并内置了对多种分布式策略的支持。 - `Trainer` 类负责协调整个训练流程,包括自动检测可用设备以及设置相应的分布模式。 #### 2. **单机多GPU的数据并行机制** 对于单节点上的多个 GPU 来说,“数据并行”是最常见的做法之一。在这种方式下,每张显卡都会保留一份完整的网络权重副本;输入样本会被分割成若干份分别送入不同的设备上独立完成前向传播与反向梯度更新操作后再汇总结果得到最终损失函数值的变化情况从而同步全局参数状态达到共同进步的目的。 ```python from pytorch_lightning import Trainer, seed_everything import torch.nn as nn import torch.optim as optim class MyModel(pl.LightningModule): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Linear(100, 50), nn.ReLU(), nn.Linear(50, 1) ) def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch pred = self(x) loss = nn.MSELoss()(pred, y) return {'loss': loss} trainer = Trainer(gpus=4, strategy="dp") # 使用DP(DataParallel)方式进行四卡训练 model = MyModel() trainer.fit(model) ``` 上述代码展示了如何利用 PyTorch Lightning 的 DataParallel (简称 DP) 方法来进行简单的多 GPU 训练配置。 #### 3. **跨机器扩展——多机多GPU并行** 当单一服务器内的所有 GPU 资源仍不足以满足需求时,则需考虑跨越物理边界至其他计算机继续增加算力规模。此时可借助诸如 NCCL 或 MPI 这样的高效消息传递库促进节点间通讯效率最大化的同时保持较低延迟水平以便于快速交换中间产物信息进而维持整体收敛速度不受影响太多。 另外,在实际部署之前还需要仔细规划好集群拓扑关系图以确保最佳互联路径选取正确无误并且能够有效减少不必要的带宽消耗现象发生几率最小化可能存在的瓶颈效应问题出现概率降至最低限度范围内合理范围之内即可接受程度之上才可行得通顺流畅运行下去直至结束为止才行哦! #### 4. **模型并行策略** 除了传统的数据层面划分之外,针对超大型神经网络还可以采取更加精细粒度级别的切分手段即所谓的“模型并行”。这主要包括但不限于以下几种形式: - 层级并行(Layer Parallelism): 将不同层分配到各自专属处理器上去单独执行相应运算任务而不与其他部分共享任何东西; - 管道并行(Pipeline Parallelism): 把整个序列分解成为数个小阶段然后依次串接起来形成流水线作业形态最后再组合回原样输出预期成果出来展示给用户观看欣赏就好啦😊; - 参数并行(Parameter Partitioning): 对特别庞大的权重组件实施分区存储管理措施使得每个子集仅占用有限空间位置而不会造成溢出风险事件的发生频率过高以至于难以控制局面发展态势走向失控边缘区域附近徘徊不定的状态持续较长时间段落期间无法恢复正常秩序恢复平稳运作状况良好表现优异成绩突出显著效果明显可见一斑也值得肯定赞扬一番呢👏🎉! 这些先进的算法设计理念极大地推动了现代人工智能领域向前迈进了一大步距离拉近了许多许多倍不止于此而已哟😎💪! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值