RAG入门教程:Langchian的Embedding介绍与使用

unsetunsetEmbedding介绍unsetunset

词向量是 NLP 中的一种表示形式,其中词汇表中的单词或短语被映射到实数向量。它们用于捕获高维空间中单词之间的语义和句法相似性。

在词嵌入的背景下,我们可以将单词表示为高维空间中的向量,其中每个维度对应一个特定的特征,例如“生物”、“猫科动物”、“人类”、“性别”等。每个单词在每个维度上都分配有一个数值,通常在 -1 到 1 之间,表示该词与该特征的关联程度。

例如,“猫”这个词在“猫科动物”维度上可能具有较高的正值,而在“人类”维度上具有接近于零的值,这反映了它与猫科动物的紧密关联性,而与人类的关联性较低。

这种数值表示使我们能够捕捉单词之间的语义关系并对其执行数学运算,例如计算单词之间的相似度或将其用作 NLP 任务中 ML 模型的输入。

LangChain 可容纳来自不同来源的多种嵌入。

unsetunsetOpenAIunsetunset

import os   os.environ["OPENAI_API_KEY"] = "your-key"         from langchain_openai import OpenAIEmbeddings      embeddings = OpenAIEmbeddings()      text = "Text"      text_embedding = embeddings.embed_query(text)      print(text_embedding)      """   [-0.0006077770551231004,    -0.02036312831034526,    0.0015661947077772864,    -0.0008398058726938265,    0.00801365303172794,    0.01648443640533639,    -0.015071485112588635,    -0.006794635682304868,    -0.009232670381151012,    -0.004512441507728793,    0.00296615975583046,    0.02781575545470095,    -0.004290802116650396,    0.009204965399058554,    -0.007286398183123463,    0.01896402857732122,    0.03457576177203527,    0.01469746878566298,    0.03812199202928964,    -0.033024282774857694,    -0.014143370075136358,    -0.0016640276929606461,    -0.00023289462736494386,    -0.009856030615586264,    -0.018867061139997622,   ...    -0.0007159994667987885,    -0.024920590413974295,    0.009017956769934473,    0.005336663327995613,    ...]   """      print(len(text_embedding))      """   1536   """   

unsetunsetHuggingFaceunsetunset

from langchain_community.embeddings import HuggingFaceEmbeddings   embedding_path = r'H:\pretrained_models\bert\english\paraphrase-multilingual-mpnet-base-v2'      embeddings = HuggingFaceEmbeddings(model_name=embedding_path)      text = "This is a test document."      text_embedding = embeddings.embed_query(text)      print(len(text_embedding)) # 768   

unsetunsetGoogleunsetunset

from langchain_google_genai import GoogleGenerativeAIEmbeddings   os.environ["GOOGLE_API_KEY"] = "your-key"      embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")   text_embedding = embeddings.embed_query("hello, world!")      print(text_embedding) # 768   

更多Embedding可以查看https://python.langchain.com/v0.2/docs/integrations/text_embedding/

unsetunset计算相似性unsetunset

我们可以使用嵌入来计算文本的相似度。

word_list = ["Cat", "Dog", "Car""Truck","Computer","Laptop","Apple","Orange", "Music","Dance"]      embedding_model = OpenAIEmbeddings()      embeds = [embedding_model.embed_query(word) for word in word_list]      embeds   """   [[-0.008174207879591734,     -0.007511803310590743,     -0.00995655437174355,     -0.024788951157780095,     -0.012790553094547429,     0.006654775143594856,     -0.0015151649503578363,     -0.03783217392596492,     -0.014422662356334227,     -0.026250339680779597,     0.017154227704543168,     0.046327340706031526,     0.0035646922858117093,     0.004240754467349556,     -0.032287098019987186,     -0.004592443287070655,     0.03955306057962428,     0.005261676778755394,     0.00789422251521935,     -0.015501631209043845,     -0.023723641081760536,     0.0053197228543978925,     0.014873371253461594,     -0.012141805905252653,     -0.006781109980413554,   ...     0.00566348496318421,     0.01855802589283819,     0.00531267762533671,     0.02393075147421956,     ...]]   """   

我们引入另一个单词并计算相似度。

input_word = "Lion"      input_embed = embedding_model.embed_query(input_word)   import numpy as np      def cosine_similarity(a, b):       return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))      similarity = cosine_similarity(embeds[0], input_embed)      print(similarity) #0.8400893968591456   from sklearn.metrics.pairwise import cosine_similarity      similarity = cosine_similarity(np.array([embeds[0]]), np.array([input_embed]))      print(similarity) #array([[0.8400894]])   sims = [cosine_similarity(np.array([emb]), np.array([input_embed])) for emb in embeds]      """   [array([[0.8400894]]),    array([[0.80272758]]),    array([[0.79536215]]),    array([[0.81627175]]),    array([[0.82762581]]),    array([[0.81705796]]),    array([[0.82609729]]),    array([[0.78917449]]),    array([[0.79970112]])]   """   

考虑文本存储在 CSV 文件中,我们计划将其用作评估输入相似性的参考。

from langchain.document_loaders.csv_loader import CSVLoader      loader = CSVLoader(file_path='data.csv', csv_args={       'delimiter': ',',       'quotechar': '"',       'fieldnames': ['Words']   })      data = loader.load()   data      """   [Document(page_content='Words: Words', metadata={'source': 'data.csv', 'row': 0}),    Document(page_content='Words: Cat', metadata={'source': 'data.csv', 'row': 1}),    Document(page_content='Words: Dog', metadata={'source': 'data.csv', 'row': 2}),    Document(page_content='Words: CarTruck', metadata={'source': 'data.csv', 'row': 3}),    Document(page_content='Words: Computer', metadata={'source': 'data.csv', 'row': 4}),    Document(page_content='Words: Laptop', metadata={'source': 'data.csv', 'row': 5}),    Document(page_content='Words: Apple', metadata={'source': 'data.csv', 'row': 6}),    Document(page_content='Words: Orange', metadata={'source': 'data.csv', 'row': 7}),    Document(page_content='Words: Music', metadata={'source': 'data.csv', 'row': 8}),    Document(page_content='Words: Dance', metadata={'source': 'data.csv', 'row': 9})]   """   

CSVLoader 类用于从 CSV 文件加载数据。我们将在系列后面介绍装载机。我们可以利用FAISS结合LangChain来创建一个向量存储。

embeddings = OpenAIEmbeddings()      from langchain_community.vectorstores import FAISS      db = FAISS.from_documents(data, embeddings)   
user_input = "Lion"      results = db.similarity_search(user_input)      results      """   [Document(page_content='Words: Cat', metadata={'source': 'data.csv', 'row': 1}),    Document(page_content='Words: Apple', metadata={'source': 'data.csv', 'row': 6}),    Document(page_content='Words: Dog', metadata={'source': 'data.csv', 'row': 2}),    Document(page_content='Words: Orange', metadata={'source': 'data.csv', 'row': 7})]   """   

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 17
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值