产品接入大模型驱动的 AI 客服机器人也有一段时间了,也积累了不少真实场景下的客户问答数据,因为给每条回答设置了点 👍 点 👎 按钮,最近将其中点 👍 的问答对导出来(妥妥的人工标准高质量数据),试着基于 Qwen2-7B 微调一个小模型跑下效果,如果能够应付 85% 以上回答,准备在这个场景里撤下当前的智谱模型了。
Qwen2-7B 在中文场景下的回答效果我在 siliconflow 上体验下来,效果很不错,所以选它做基础模型。
Qwen2-7B
微调步骤
安装 LLaMA Factory 依赖
我是在谷歌 Colab 里面微调的,毕竟免费用户可以白嫖 15G 显存的 T4 GPU,这里特别感谢 LLaMA Factory[1] 项目,一个包免去多余的依赖安装和环境配置。
%cd /content/``%rm -rf LLaMA-Factory``!git clone https://github.com/hiyouga/LLaMA-Factory.git``%cd LLaMA-Factory``%ls``!pip install -e .[torch,bitsandbytes]
更新预设数据集
这个 identity.json(自我认知数据集) 实际上更新的是基础模型内置设定,目的是让模型回答时既不是 Qwen2-7B、也不是 ChatGPT 等其他任何模型,它现在的名字叫BajiGo。
import json`` ``%cd /content/LLaMA-Factory/`` ``NAME = "BajiGo"``AUTHOR = "莫尔索"`` ``with open("data/identity.json", "r", encoding="utf-8") as f:` `dataset = json.load(f)`` ``for sample in dataset:` `sample["output"] = sample["output"].replace("{{"+ "name" + "}}", NAME).replace("{{"+ "author" + "}}", AUTHOR)`` ``with open("data/identity.json", "w", encoding="utf-8") as f:` `json.dump(dataset, f, indent=2, ensure_ascii=False)
下面是更新后的 identity.json 示例:
identity.json 示例
添加自定义数据
LLaMA-Factory 在 data
文件夹中提供了多个训练数据集示例,支持 alpaca
或 sharegpt
格式,不过我这里使用的是自己提前导出来做过处理的自定义数据集。
1. 自定义数据集选用 alpaca
,格式如下:
[` `{` `"instruction": "user instruction (required)",` `"input": "user input (optional)",` `"output": "model response (required)",` `"system": "system prompt (optional)",` `"history": [` `["user instruction in the first round (optional)", "model response in the first round (optional)"],` `["user instruction in the second round (optional)", "model response in the second round (optional)"]` `]` `}``]
2. 因为我只有标注后的问答对,所以只需要填充instruction
和output
部分即可,下面是部分数据,保存为 bajigo.json,并上传到 LLaMA-Factory 的 data 目录下。
`{` `"instruction": "我能建两份菜单然后自行切换吗",` `"input": "",` `"output": "你好,暂不支持同时创建多个菜单。如果你是想在不同时段进行不同的菜单展示,你可以在首页点击「商品」进入商品管理页面,之后点击右上方的「批量管理」按钮,选中商品后在下方按需要点击上架/下架进行批量操作,来更换菜单内商品。` `"system": "",` `"history": []` `},` `{` `"instruction": "优惠券怎么发",` `"input": "",` `"output": "你好,你可以在首页点击「活动&储值」->「活动」->「优惠券」设置优惠券,根据你的需求,自定义优惠券名称、生效范围、有效日期,优惠券类型也分为满减优惠券、折扣优惠券和免费优惠券。填好信息后,点击「下一步」按钮,就可以指定发送对象与发放数量了。目前只支持这种方式进行发券,不支持用户主动领取哦。,` `"system": "",` `"history": []` `},` `{` `"instruction": "怎么绑定打印机",` `"input": "",` `"output": "你好,你可以在首页点击「店铺设置」->「打印机」去添加打印机,并且我们支持同时绑定多台打印机。需要注意的是,我们目前只支持飞鹅牌的小票机和标签机,拿到机器后,你可以打开,然后找到打印机设置,扫描小票机或者标签机底部的二维码即可进行绑定。` `"system": "",` `"history": []` `},`
3. 修改dataset_info.json
,将数据集添加到全局配置,好让程序到时候可以直接根据bajigo
名称匹配到相应训练数据。
`"bajigo": {` `"file_name": "bajigo.json",` `"columns": {` `"prompt": "instruction",` `"query": "input",` `"response": "output",` `"system": "system",` `"history": "history"` `}` `},`
配置训练参数
这里需要专门说下,刚开始计划使用的是 Qwen2-7B-Instruct 全量模型,奈何加载模型的时候 GPU 内存就爆了(大家如果不缺 GPU,配置为 Qwen/Qwen2-7B-Instruct 即可),最后找到了一个 4bit 量化版 Qwen2-7B-Instruct-bnb-4bit,下面是一些训练参数配置及解释。
import json`` ``args = dict(` `stage="sft", # 进行指令监督微调` `do_train=True,` `model_name_or_path="unsloth/Qwen2-7B-Instruct-bnb-4bit", # 使用 4 bit量化版 Qwen2-7B-Instruct 模型` `dataset="identity,bajigo", # 使用 bajigo 和自我认知数据集` `template="qwen", # 使用 qwen2 提示词模板` `finetuning_type="lora", # 使用 LoRA 适配器来节省显存` `lora_target="all", # 添加 LoRA 适配器至全部线性层` `output_dir="qwen2_lora", # 保存 LoRA 适配器的路径` `per_device_train_batch_size=2, # 批处理大小` `gradient_accumulation_steps=4, # 梯度累积步数` `lr_scheduler_type="cosine", # 使用余弦学习率退火算法` `logging_steps=10, # 每 10 步输出一个记录` `warmup_ratio=0.1, # 使用预热学习率` `save_steps=1000, # 每 1000 步保存一个检查点` `learning_rate=5e-5, # 学习率大小` `num_train_epochs=3.0, # 训练轮数` `max_samples=300, # 使用每个数据集中的 300 条样本` `max_grad_norm=1.0, # 将梯度范数裁剪至 1.0` `quantization_bit=4, # 使用 4 比特 QLoRA (可选,4 bit量化版)` `loraplus_lr_ratio=16.0, # 使用 LoRA+ 算法并设置 lambda=16.0(可选,4 bit量化版)` `fp16=True # 使用 float16 混合精度训练(可选,4 bit量化版)``)`` ``json.dump(args, open("bajigo.json", "w", encoding="utf-8"), indent=2)`` ``%cd /content/LLaMA-Factory/`` ``!llamafactory-cli train bajigo.json # 开始指令监督微调
开始训练
接下来就是耐心等待炼丹,差不多 16 分钟左右,模型就微调结束了,果然 4bit 小有小的好处,是不是很容易 😎。
微调结束
智能客服上线
接下来赶紧试下微调好的模型(利用 while 逻辑实现的一个简单终端对话效果)
%cd /content/LLaMA-Factory/``import sys``import os`` ``# 获取当前工作目录``current_path = os.getcwd()`` ``# 拼接当前工作目录和src目录的路径``src_path = os.path.join(current_path, 'src')`` ``# 将src目录的路径添加到sys.path的开头``sys.path.insert(0, src_path)`` ``from llamafactory.chat import ChatModel``from llamafactory.extras.misc import torch_gc`` ``torch_gc()``args = dict(` `model_name_or_path="unsloth/Qwen2-7B-Instruct-bnb-4bit", # 使用 4 bit量化版 Qwen2-7B-Instruct 模型` `adapter_name_or_path="qwen2_lora", # 加载之前保存的 LoRA 适配器` `template="qwen", # 和训练保持一致` `finetuning_type="lora", # 和训练保持一致``)``chat_model = ChatModel(args)`` ``messages = []```print("使用 `clear` 清除对话历史,使用 `exit` 退出程序。")```while True:` `query = input("\n用户: ")` `if query.strip() == "exit":` `break` `if query.strip() == "clear":` `messages = []` `torch_gc()` `print("对话历史已清除")` `continue`` ` `messages.append({"role": "user", "content": query})` `print("BajiGo: ", end="", flush=True)`` ` `response = ""` `for new_text in chat_model.stream_chat(messages):` `print(new_text, end="", flush=True)` `response += new_text` `print()` `messages.append({"role": "assistant", "content": response})
下面就是对话效果截图,怎么样,回答的内容基本和训练数据集中的 QA 对差不多,接下来我会继续测试没纳入训练集的点 👎 问题的回答效果。
BajiGo对话效果
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。