这篇论文介绍了一种名为"MInference"的技术,用于加速长上下文语言模型(LLM)的预填充阶段。由于LLM计算量大,导致在单个GPU上进行预填充时需要花费很长时间,并且经常无法保持准确性。为了解决这个问题,作者提出了动态稀疏注意力算法,可以有效减少长序列处理的时间和计算成本。该技术能够在不修改原始模型的情况下显著降低推理延迟并提高准确率。实验结果表明,在一个A100 GPU上,对于1M上下文长度,MInference能够实现高达10倍的速度提升,并且与基准线相比表现得更好或相等。
方法描述
本文提出了动态稀疏注意力系统来加速长上下文语言模型(LLM)的推理速度,并保持尽可能多的关注权重。该系统通过使用动态稀疏掩码来计算稀疏注意力矩阵,并通过优化稀疏模式搜索来选择最佳的稀疏模式。此外,文章还介绍了两种稀疏模式:垂直-斜线模式和块稀疏模式,并提供了相应的实现细节。
方法改进
与传统的静态稀疏注意力计算相比,动态稀疏注意力系统具有更高的效率和更少的内存占用。在实验中,该系统能够显著提高LLM的推理速度,同时保持良好的准确性。
解决的问题
长上下文语言模型通常需要大量的计算资源才能处理长序列输入。本文提出的动态稀疏注意力系统可以有效地减少计算量并提高推理速度,从而更好地满足实际应用的需求。
论文实验
本文主要介绍了作者针对长文本处理的MInference方法进行了多项对比实验,并对其性能和效率进行了评估。具体来说,实验分为以下四个部分:
-
无限长文集(InfiniteBench)实验:使用四个基准任务对模型进行测试,包括检索任务、问答任务、代码调试等。结果表明,MInference在这些任务中表现良好,甚至有些任务超过了原始全注意力模型的表现。
-
RULER实验:这是一个挑战性的长文本处理基准,包括多跳推理、聚合等复杂任务。实验结果显示,MInference在RULER上表现优异,特别是在长上下文中,能够有效地保持模型的性能。
-
语言建模实验:使用PG-19数据集对模型进行测试,与其他稀疏方法进行比较。结果表明,MInference在这项任务中的表现优于其他稀疏方法,并且与全注意力模型相比有较小的偏差。
-
稀疏策略的贡献分析实验:通过删除不同的稀疏策略来分析其对模型性能的影响。结果表明,静态稀疏策略会显著降低模型性能,而动态稀疏策略对于不同类型的任务都有很好的效果。
此外,文章还介绍了MInference的效率实验,包括延迟和分解分析等方面。实验结果表明,MInference能够在不同长度的上下文中实现快速计算,从而降低了部署成本并提高了用户体验。最后,作者还将MInference与一种先进的键值缓存压缩方法SnapKV相结合,证明了MInference的兼容性和潜在的实际价值。
论文总结
文章优点
-
论文提出了一种新的加速长上下文语言模型预填充阶段的方法,称为MInference。
-
MInference通过识别三种不同类型的动态稀疏注意力模式(A-shape、Vertical-Slash和Block-Sparse)来加速计算,并使用优化的GPU内核执行稀疏注意力计算。
-
实验结果表明,MInference在各种长上下文语言模型上显著提高了性能,将处理时间从数分钟降低到仅需几秒钟。
方法创新点
-
MInference是一种针对长上下文语言模型的自适应稀疏注意力计算方法,能够根据输入数据自动选择最佳的稀疏模式并进行动态构建。
-
MInference利用了长上下文语言模型中注意力矩阵高度稀疏的特点,同时避免了固定稀疏模式所带来的训练或微调成本。
-
MInference还引入了高效的GPU内核以进一步提高计算效率。
未来展望
-
MInference为长上下文语言模型提供了更快速、准确的预填充阶段计算方法,可以应用于多种自然语言处理任务。
-
未来研究可以探索如何进一步优化MInference算法,例如结合其他技术如剪枝、量化等以减少内存占用和计算量。
-
此外,也可以考虑将MInference扩展到其他类型的神经网络结构中,以实现更广泛的应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。