详细比较LlamaIndex和LangChain,选择适合你的大模型RAG框架

大型语言模型(LLMs)正引领人工智能技术的创新浪潮。自从OpenAI推出ChatGPT,企业、开发者纷纷寻求定制化的AI解决方案,从而催生了对开发和管理这些模型的工具和框架的巨大需求。

LlamaIndex和LangChain作为两大领先框架,二者各自的特点和优势,将决定它们在不同场景下的应用。本文介绍这两个框架的主要差异,帮助读者做出明智的选择。

1 LlamaIndex

LlamaIndex 流程

LlamaIndex框架简化了对大型语言模型的个性化数据索引和查询,支持多种数据类型,包括结构化、非结构化及半结构化数据。

LlamaIndex通过将专有数据转化为嵌入向量,使数据能够被最新型的LLMs广泛理解,从而省去了重新训练模型的步骤,提高数据处理的效率和智能化水平。

1.1 工作原理

LlamaIndex 架构

LlamaIndex框架推动了大型语言模型(LLMs)的定制化发展。通过将专属数据嵌入内存,使模型在提供上下文相关回答时表现更佳,将LLMs塑造成领域知识专家。无论是作为AI助手还是对话机器人,LlamaIndex都能根据权威资料(如仅限高层访问的业务信息PDF)准确回应查询。

LlamaIndex采用检索增强生成(RAG)技术,定制化LLMs,包括两个核心步骤:

  • 索引阶段:将专有数据转化为富含语义信息的向量索引。

  • 查询阶段:系统接收到查询后,迅速匹配并返回最相关的信息块,结合原始问题,由LLM生成精准答案。

1.2 LlamaIndex快速入门

安装llama-index:

pip install llama-index   

使用 OpenAI 的 LLM 需要 OpenAI API 密钥。获得秘钥后,在 .env 文件中这样设置:

import os   os.environ["OPENAI_API_KEY"] = "your_api_key_here"   

1.3 构建问答应用:LlamaIndex实践

为了展示LlamaIndex的能力,下面进行代码演示,开发一个基于自定义文档回答问题的问答应用程序。

安装依赖项:

pip install llama-index openai nltk   

使用LlamaIndex的SimpleDirectoryReader函数加载文档,开始构建索引:

from llama_index.core import (       VectorStoreIndex,       SimpleDirectoryReader   )      # 定义SDR函数内的路径,然后构建索引   documents = SimpleDirectoryReader("docs").load_data()   index = VectorStoreIndex.from_documents(documents, show_progress=True)   

查询索引并检查响应:

# 查询引擎   query_engine = index.as_query_engine()      response = query_engine.query("If i miss my assignments and projects,    what grade and percentage will i end up with?")   print(response)   

使用 LlamaIndex 建立的 LLM 响应

查询引擎将搜索数据索引,并以相关片段的形式返回响应。

还可以通过修改函数将此查询引擎转换为具有记忆的聊天引擎:

chat_engine = index.as_chat_engine()   response = chat_engine.chat("If i miss my assignments and projects,    what grade and percentage will i end up with?")   print(response)   follow_up = chat_engine.chat("And if i only miss my projects,    then what grade would i get?")   print(follow_up)   

为了避免每次重建索引,可以将其持久化到磁盘:

index.storage_context.persist()   

稍后加载回来:

from llama_index.core import (       StorageContext,       load_index_from_storage,   )      storage_context = StorageContext.from_defaults(persist_dir="./storage")   index = load_index_from_storage(storage_context)   

2 LangChain

Langchain流程

LangChain是一个框架,专门用于基于自定义数据构建个性化的大型语言模型(LLMs)。它能够整合多种数据源,包括关系型数据库、非关系型数据库、APIs,以及自定义知识库。

LangChain通过链式机制运作,将一系列请求和集成工具的输出依次传递,形成连续的处理流程。利用这一机制,LangChain不仅能够确保从您的专有数据中提取相关上下文,还能生成恰当的响应,无论是用于公司的定制问答机器人、内部分析还是与数据源协同工作的AI助手。其内置的链式结构,便于开发者将多样的工具整合进LLM应用,构建出功能全面的系统。

2.1 工作原理

Langchain架构

LangChain框架由以下核心组件构成:

  • 提示(Prompts):这是向模型发出的指令,用以引导模型产生预期的输出或响应。

  • 模型接口:LangChain提供了一个用户界面,允许用户快速更换并测试不同的语言模型,包括最新的GPT-4、Gemini 1.5 pro、Hugging Face LLM、Claude 3等。

  • 索引技术:框架采用嵌入和内存向量存储等技术,以优化数据的索引和检索。

  • 组件链式连接:LangChain简化了不同组件之间的连接流程,使得构建复杂的处理链变得轻而易举。

  • AI智能体:提供一系列智能体,协助用户管理和分配任务,以及工具的使用。

2.2 LangChain快速入门

安装LangChain:

pip install langchain   

这里使用cohere API密钥。在.env文件中使用 API 密钥设置 cohere 环境变量:

import os   os.environ["cohere_apikey"] = "your_api_key_here"   

2.3 构建问答应用:LangChain实践

下面进行代码演示,开发一个基于自定义文档回答问题的问答应用程序。

第一步是安装依赖项:

pip install langchain cohere chromadb ## 我们使用cohere而不是OpenAI的LLM   

接着,加载文档数据并创建索引。还将使用 cohere 嵌入生成嵌入:

from langchain.document_loaders import OnlinePDFLoader   from langchain.vectorstores import Chroma   from langchain.embeddings import CohereEmbeddings   from langchain.text_splitter import RecursiveCharacterTextSplitter      loader = OnlinePDFLoader(document)   documents = loader.load()      # 初始化文本分割器   text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunksize,chunk_overlap=10,      separators=[" ", ",", "\n"])      # 初始化Cohere嵌入   embeddings = CohereEmbeddings(model="large", cohere_api_key=st.secrets["cohere_apikey"])             texts = text_splitter.split_documents(documents)   global db   db = Chroma.from_documents(texts, embeddings)   retriever = db.as_retriever()   global qa   

查询索引并检查响应:

query = "Compare indian constitution's approach to secularism with    that of other countries?"   result = db.query(query)   print(result)   

使用 Langchain 建立的 LLM 响应

查询将对数据进行语义搜索,并检索出对查询的适当回应。

如果需要,可以使用 langchain 的RetrievalQA模块进行链式处理,这里也使用 cohere 的 LLM:

from langchain.llms import Cohere   from langchain.chains import RetrievalQA      qa = RetrievalQA.from_chain_type(           llm=Cohere(               model="command-xlarge-nightly",               temperature=temp_r,               cohere_api_key=st.secrets["cohere_apikey"],           ),           chain_type="stuff",           retriever=retriever,           return_source_documents=True,           chain_type_kwargs=chain_type_kwargs,       )   

3 LlamaIndex与LangChain应用场景

3.1 LlamaIndex:

  • 构建具有特定知识库的查询和基于搜索的信息检索系统。

  • 开发能够针对用户查询仅提供相关信息片段的问答聊天机器人。

  • 对大型文档进行摘要、文本补全、语言翻译等。

3.2 LangChain:

  • 构建端到端的会话聊天机器人和AI智能体。

  • 将自定义工作流程集成到大型语言模型(LLMs)中。

  • 通过APIs和其他数据源扩展LLMs的数据连接选项。

3.3 LlamaIndex和LangChain的结合使用案例:

  • 构建专家级AI智能体:LangChain能够整合多种数据源,而LlamaIndex能够根据相似性语义搜索能力进行策划、摘要,并生成更快的响应。

  • 高级研发工具:利用LangChain的链式机制同步管理工具和工作流程,同时使用LlamaIndex帮助生成更具上下文意识的LLM,并获取最相关的响应。

4 选择框架:LlamaIndex vs LangChain

在选择LlamaIndex与LangChain这两个框架之前,需要思考几个关键问题:

  • 项目需求:如果目标是构建基础的索引、查询搜索和数据检索系统,LlamaIndex将是合适的选择。若项目需要集成复杂的自定义工作流程,则LangChain将更加合适。

  • 易用性:LlamaIndex以其简洁的界面著称,易于上手。相比之下,LangChain则要求用户对自然语言处理(NLP)的概念和组件有更深入的了解。

  • 定制程度:LangChain的模块化设计让其在定制化和工具集成方面更为灵活。而LlamaIndex则专注于提供高效的搜索和检索功能。

5 结语

LlamaIndex和LangChain都是构建定制化LLM应用的有力工具。LlamaIndex擅长搜索和检索,而LangChain则以其模块化和集成性胜出。选择哪个,取决于具体的项目需求、易用性偏好和定制化程度。

如果追求多功能集成和AI智能体,LangChain是理想选择。若目标是高效的信息索引和检索,LlamaIndex则更加合适。实际上,两个框架可以协同工作,不必二选一。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值