人工智能的浪潮正以惊人的速度席卷全球,而站在这场革命最前沿的莫过于"AI 教父"吴恩达。近日,在接受 ARK Invest 的 Brett Winton 和 Charles Roberts 的名为「An Artificial Intelligence Conversation With Andrew Ng」的采访时,这位斯坦福大学教授、Coursera 联合创始人、谷歌大脑和百度前负责人,为我们揭示了 AI 发展的最新动向。他的观点不仅让人耳目一新,更是给我们描绘了一幅令人振奋的未来图景。
1.AI 已到临界点:从理论到实践的飞跃
吴恩达开门见山地表示,AI 技术已经突破了关键节点,正在以前所未有的速度向实际应用领域迈进。
"我们远远没有触及 AI 的天花板,"他说,“那些声称 AI 已经停滞不前的观点,在我看来简直不可思议。”
他举例说明,目前 AI 在生成式任务中的表现已经远超人类预期。想象一下,你让一个 AI 系统写一篇论文,它不仅能完成,而且质量可能超过许多人类写手。更令人兴奋的是,这仅仅是冰山一角。
吴恩达透露,ARK Invest 的一份报告预测,到 2030 年,AI 软件市场规模将达到惊人的 13 万亿美元。这个数字几乎是当前全球 IT 支出总额的三倍!这意味着什么?简单来说,我们正站在一个巨大商机的风口浪尖。
但是,吴恩达也指出了当前 AI 落地的一个主要障碍:GPU 供应链问题。
"很多企业已经有了非常棒的 AI 应用想法,但苦于没有足够的算力支持,"他说,“不过,这个问题在未来一两年内必然会得到解决。到那时,我们将看到 AI 应用如雨后春笋般涌现。”
2.趋势一:Agentic 系统的崛起
在吴恩达看来,未来最令人兴奋的 AI 发展方向莫过于 Agentic 系统。这种系统不再是简单的输入-输出模式,而是能够像人类一样进行自我反思和错误修正。
他分享了一个有趣的案例:在斯坦福大学的一次演示中,他编写的 AI 代理在网络搜索失败后,自动切换到维基百科搜索,成功完成了任务。
"这让我自己都感到惊讶,"吴恩达笑着说,“AI 展现出了类似人类的灵活性和问题解决能力。”
这种自主性意味着什么?想象一下,在企业中,AI 不再只是执行简单的重复任务,而是能够处理复杂的决策流程。它可以分析问题、制定策略、执行计划,甚至在遇到障碍时自行调整方向。这将彻底改变我们的工作方式和组织结构。
3.趋势二:Agentic 工作流的革新
紧随 Agentic 系统而来的是 Agentic 工作流的兴起。吴恩达认为,这将是 AI 应用的一次质的飞跃。
"传统的 AI 模型就像是一次性完成一篇文章,而 Agentic 工作流则更像人类的写作过程:先列大纲,然后写初稿,再进行修改和完善,"他解释道,“这种迭代式的工作方式能大大提高 AI 输出的质量和准确性。”
但实现这一目标的关键在于快速推理能力。吴恩达透露,目前有多家公司正在研发每秒能生成数百个 token 的 AI 系统。这意味着 AI 将能在极短时间内完成复杂的思考和创作过程,远超人类的能力。
他预测,这种技术将彻底改变人机协作模式。
"未来,AI 可能会处理大部分执行性任务,而人类则专注于制定战略和创意思考,"吴恩达说,“这不是在取代人类,而是让我们能够更好地发挥自己的优势。”
4.趋势三:基础模型的演进与挑战
谈到 AI 基础模型,吴恩达的观点颇具争议。他认为,纯粹的基础模型层面可能难以建立长期的竞争优势。
"根据 ARK 的报告,AI 训练成本每年下降 75%。这意味着你今年花 1 亿美元训练的模型,明年可能只需要 2500 万美元就能复制,"他解释道,“在这种情况下,如何保持领先优势?”
但吴恩达并不认为这是坏消息。相反,他认为这种成本下降将推动 AI 民主化,让更多人和企业能够参与到 AI 创新中来。
他特别提到了 Meta(原 Facebook)开源 Llama 3 模型的举动。"很多人觉得这是扎克伯格在下一盘很大的棋,但其实这是一个非常合理的商业决策,"吴恩达分析道,“通过推动开源生态系统,Meta 可以确保自己不会被某个专有平台所束缚,这对他们的长期发展至关重要。”
5.趋势四:推理能力的突破
在吴恩达看来,未来 AI 发展的一个关键瓶颈在于推理能力。他指出,目前大多数商用 AI 系统的 token 生成速度在每秒 6-10 个左右,而这远远不够。
"想象一下,如果 AI 能以每秒 300 个 token 的速度进行推理,那将会带来什么样的可能性?"他兴奋地说,“这不仅仅是量的变化,而是质的飞跃。它将使得复杂的 AI 代理系统成为现实,彻底改变我们与 AI 交互的方式。”
吴恩达透露,已经有多家公司在这个领域取得了突破性进展。例如,GROQ 公司已经展示了每秒生成 300 个 token 的能力,而 SambaNova 也达到了类似的水平。
"这些进展将使得更复杂、更智能的 AI 应用成为可能,"他预测道,“我们可能很快就能看到 AI 助手不仅能回答问题,还能主动为我们规划和执行复杂的任务。”
6.趋势五:AI 评估与 MLOps 的进化
最后,吴恩达强调了 AI 评估和机器学习运维(MLOps)的重要性。他指出,随着 AI 技术的飞速发展,如何有效评估和部署 AI 系统已经成为一个迫切需要解决的问题。
"目前,开发一个 AI 原型可能只需要一天时间,但评估它可能需要十天甚至更长,"他说,“这种不平衡严重阻碍了 AI 创新的步伐。”
吴恩达呼吁业界开发更高效的 AI 评估方法。他认为,只有这样,企业才能快速验证不同模型的性能,并选择最适合自己需求的解决方案。
同时,他预测 MLOps 将向 LLMOps(大语言模型运维)演进。"未来,我们需要新的框架来管理和部署这些复杂的 AI 系统,"他解释道,“这不仅仅是技术问题,更是一个组织和文化的变革。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。