题目:Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multi-modal data(Q1)
研究背景
仅使用单一模式数据通常无法捕捉患者之间复杂的异质性,包括对抗 HER2 治疗的耐药性和联合治疗方案结果的可变性,用于治疗HER2阳性胃癌 (GC)。许多研究尚未充分考虑这种模式缺陷。此外,人工智能在预测治疗反应中的应用,特别是在GC等复杂疾病中的应用仍处于起步阶段。因此,本研究旨在使用综合分析方法准确预测 HER2 阳性 GC 患者对抗 HER2 治疗或抗 HER2 联合免疫治疗的治疗反应。
研究思路
研究结果
HER2阳性GC研究的多模态数据集和队列特征
本研究引入了MuMo的多模态模型,用于预测胃癌患者对HER2疗法和HER2联合免疫疗法的治疗反应。该模型通过整合病理全切片图像和放射学CT扫描等不同模态的数据来提取深度特征和组学特征,并结合临床报告进行训练。(图1)。
图1:多模态模型(MuMo)的工作流程
研究中使用的多模态数据的分布和特点,包括影像学、病理学和临床信息。研究通过整合这些不同模态的数据,构建了一个全面的患者画像,研究结果表明,这种多模态数据整合方法能够显著提高模型的预测性能。(图2)
图2 抗HER2联合免疫治疗队列的数据特征
MuMo在抗HER2队列中的预测性能
通过接收者操作特征(ROC)曲线和Kaplan-Meier(KM)曲线来展示模型的准确性和生存分析结果。研究方法包括使用Bootstrap重复实验来估计模型的稳定性,并通过消融研究来评估多模态信息融合模块对模型性能的贡献。结论显示,MuMo模型在预测HER2疗法和联合免疫疗法的反应中表现出高准确性,并且能够显著区分高风险和低风险患者群体,从而为临床决策提供有力支持。(图3)。
图3:集成了 7 种机器学习算法来识别最佳特征基因
MuMo的可解释性与临床见解
MuMo模型在病理全切片图像和放射学CT扫描中的可视化分析,通过区域重要性评分和注意力图来展示模型对特定区域的关注程度。研究方法包括对病理图像中HER2表达区域的识别,以及对放射学CT扫描中病变区域的定位和分析。结论显示,MuMo模型能够有效提取与治疗反应相关的肿瘤特征,并在临床信息子组中准确预测风险评分,从而支持其可靠性和临床相关性(图4)。
图4 多模态模型(MuMo)的可解释性分析
HER2阳性GC患者的多模式数据分析的全面概述
MuMo模型在HER2阳性胃癌治疗反应预测中的完整研究流程,从数据收集到模型分析,再到关键结果的展示。研究方法包括整合影像学、病理学和临床信息,通过MuMo模型的多模态融合模块提取特征并进行风险预测,同时验证了模型在不同治疗队列中的准确性和稳定性。结论表明,MuMo模型在预测治疗反应和生存结局方面表现出卓越性能,为个性化医疗提供了创新工具,并展示了其在未来扩展到其他癌症类型和治疗场景中的潜力。(图5)
图5 MuMo分步工作流程
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。