基于LLM的多智能体运维故障根因分析

在现代企业运维领域,故障根因分析不仅至关重要,而且难度颇高。尽管单一智能体(Agent)技术为故障根因分析提供了一种有效的解决途径,但在应对复杂的运维故障时,仍存在局限性。本文旨在探索基于大型语言模型(LLM)的多智能体(Multi-Agents)技术在运维故障根因分析中的应用潜力,以期为企业带来更精确、更高效的运维故障诊断解决方案。

基于LLM的多智能体运维故障根因分析

亚信科技(中国)有限公司

一、单运维智能体的局限

目前,Agent技术已成为运维故障根因分析的有效解决方案。这种技术是基于目标导向的软件工程架构,运维人员只需明确目标,Agent便能自主探索实现目标的路径。尽管基于LLM的单Agent技术在运维故障分析上已展现出其价值,但在实际工作中,面对多维度、多层次的故障诊断,其仍有局限性。

图1:基于LLM的单运维Agent架构

单Agent聚焦专一领域,综合分析不足:单Agent聚焦单一运维领域故障诊断,在处理跨系统或跨领域的复杂故障时,往往面临能力限制。这种局限性主要源于它们在角色、知识和可用工具方面的设置以及自主规划能力的不足。例如,专注于网络监控的Agent可能难以诊断那些同时涉及数据库和应用服务器的复合型故障。

单Agent能力过载,影响分析准确率:即便赋予单个Agent多项运维故障诊断的能力,以应对复杂的运维故障诊断任务,但大型语言模型在解析长文本时的复杂性和长程逻辑的不稳定性,使得Agent在路由对应诊断能力和多轮交互中精确捕捉故障的微妙线索变得具有挑战性,这可能导致故障根因定位不够准确。例如,在一个繁琐的服务调用链中,如果一个Agent无法正确追踪跨服务的请求,就可能错过关键的故障线索。

Agent间协作需人工,影响分析效率:在复杂运维故障根因分析时,由于缺乏统一的协作框架,运维人员必须与每个独立Agent进行多轮沟通,以确定可能的故障原因。例如,如果存在一个专门监控硬件的Agent和一个专注于软件监控的Agent,运维人员就需要分别与它们沟通,了解它们是否检测到异常,并评估这些异常与当前故障的关联性。这种分散的交互模式使故障诊断过程变得繁琐且耗时。

综上所述,基于LLM的单Agent技术在分析复杂故障根因中所展现的局限性,凸显了我们向更智能、更协同的故障诊断体系转变的迫切需求。这种转变将提升故障分析的深度与广度,确保我们能更有效地应对运维的复杂性。

‍‍‍

二、多运维智能的优势

基于LLM多智能体(Multi-Agents)系统的目标是:确保多个Agent能够高效地协同工作,共同完成那些超出任何一个单一Agent能力范畴的复杂任务。与单一Agent侧重于使用工具的能力不同,Multi-Agents更像是一个由不同专业角色组成的团队,每个Agent扮演着特定的工种,通过分工合作来提升整体的效能。这种协作方式能够快速响应故障,增强系统的安全性和稳定性。例如,当企业的支付处理系统出现延迟,Multi-Agents中的应用Agent识别出服务响应时间异常,安全Agent检测到潜在的SQL注入攻击,而数据Agent发现数据库查询效率低下。这些智能体协作,共享数据并综合分析,迅速定位到根本原因——一个恶意的外部攻击导致数据库索引失效。

图2:基于LLM的多运维Agent架构

尽管运用Multi-Agents进行故障根因分析时,多次调用同一个大型语言模型,这种做法初看似乎有些违反直觉,实际上,存在几个充分的理由来支持这种做法:

将复杂的任务进行分解。Multi-Agents设计模式为复杂任务的分解提供了一个高效的框架,它允许我们将运维故障根因分析这一复杂任务拆解为更小、更易于管理和解决的子任务。通过这种方式,不仅确保每个Agent可以专注于其擅长的特定领域,实现整个系统的高效运行和快速响应。而且子任务通常不会导致过长的上下文,从而保持了处理的高效性和准确性。

提供多智能体间协同机制。通过建立协同机制,我们能够实现任务的有效分配、信息的共享与交流,以及人类参与和影响的有机融合。这种机制确保了每个Agent都能承担与其专业能力相匹配的子任务,同时能够互相共享和交换信息,并接受人类的反馈与指导。

这种方法确实有效。目前,许多团队已经实验这种方法并取得了显著成效。例如,在D-Bot:基于大型语言模型的数据库诊断系统论文中,分析结果表明, D-Bot(基于GPT-4的Multi-Agents)在识别根本原因方面的成功率达到了77.27%,显著高于单Agent39.09%,同时在效率上也更为出色。

三、多运维智能体的关键能力

多智能体(Multi-Agents)协作框架的核心是如何实现智能体之间的协作和竞争的平衡,即如何使每个Agent都能达到自己的目标,同时也能促进整个系统的性能和效益。为了实现这一目标,Multi-Agents协作框架需要具备以下关键能力:

任务的分解与分配:利用基于LLM的自定义Planner进行任务分解,并通过Verifier验证这些分解后的任务是否符合根因分析的目标,可以确保任务分解的有效性和准确性。在任务分配方面,可以采用多种策略来实现Agent之间的任务分配。例如,AutoGen多智能体框架groupchat的speaker_selection_method方法提供了auto、manual、random、round_robin等多种选择Agent的方式。

信息的共享和交换:Agent之间的通信是支持集体智能的关键基础设施。每个Agent都能共享和交换自己的信息。从三个角度剖析Multi-Agents通信:

1. 通信范式:Agent之间交互的风格和方法,包括:合作、辩论和竞争。其中,合作模式实现一个或多个共同的目标,通常会挖掘信息以增强集体解决方案;

2.通信结构:Multi-Agents中通信网络的组织和架构,包括:Layered、Decentraized、Centralized、Shared Messae Pool,其中,Shared Messae Pool是由MetaGPT提出,为了进一步提高通讯效率,MetaGPT还是引入了Publish-Subscribe机制,确保Agent可以直接从其他Agent和共享池中获得自己需要的信息;

3. 通信内容:通信内容通常以文本形式呈现。具体内容差异很大,取决于特定的应用。例如,在软件开发中,Agent可能会就代码段相互通信。

图3:多Agent通信模式‍‍

学习的方式和方法:在单Agent研究中,通过利用记忆和反思总结的方式实现Agent的自我进化。我们可以探索将这种学习机制扩展到Multi-Agents中,以此来挖掘Agent网络潜在的集体智能。通过这种方式,我们可以增强Agent之间的交互,激发协同效应,从而提升整个系统的智能性和效率。

人类的参与和影响:使每个Agent都能与人类进行有效的参与和影响,如通过Human-in-the-loop等方式,接受人类的反馈和指导,提供人类的建议和帮助,遵守人类的伦理和法律,如通过规则、约束、监督等方式,使智能体能够根据人类的价值和标准,避免不合理和不道德的行为,提高系统的公平性和透明性。

四、多运维智能体故障根因分析应用

以“用户缴费后无法开机”场景为例,创建多智能运维故障根因分析opsAgent。采用Centralized模式(即以一个Supervisor节点为中心,管理所有其他单运维Agent节点,并由Supervisor统一与用户交互),实现单运维Agent间的信息共享与交换,基于Qwen2-72B大模型自主分解任务并智能选择下一个Agent来处理,以提高故障诊断的效率和准确性。

Step1:准备单运维智能体。构建两个单运维智能SaaSAgent和AntDBAgent。SaaSAgent负责服务故障诊断;AntDBAgent负责数据库故障诊断。

Step2:创建并编排多智能体。创建名为opsAgent的多智能体,引用SaaSAgent和AntDBAgent由Supervisor统一协调。根据实际运维需求,我们可以为opsAgent添加更多具有特定功能的Agent。为了提高运行时选择Agent的准确性,建议根据租户、应用系统等因素合理划分每个Multi-Agents的应用范围。

Step3:Supervisor提示词。提示词如下:“你是负责管理以下Agent之间对话的主管:{SaaSAgent,AntDBAgent}。根据以下用户请求,回答下一个Agent应该采取的行动。每个Agent将执行一项任务,并报告他们的结果和状态。完成后,回复FINISH”。

Step4:查看实际运行效果。当用户输入“用户缴费后无法开机”问题后,Supervisor匹配到了SaaSAgent,由其进行诊断后给出了反馈;Supervisor基于用户问题和SaaSAgent的反馈,安排AntDBAgent进行检查;AntDBAgent排查并修复完毕后,反馈给Supervisor;Supervisor安排SaaSAgent进行了最终确认,系统恢复正常。

图4:opsAgent运维故障根因分析效果展示

整个故障排查和修复过程完全由opsAgent自主协同完成,运维人员只需输入发现的问题。这种方法极大地简化了故障诊断的复杂性,并显著提高了故障排查与修复的效率。另外,适当增加opsAgent中Agent的数量,系统将能够处理更加复杂的故障问题,从而进一步提升运维效率和效果。

五、多运维智能体的挑战

Multi-Agents在处理复杂的故障根因分析方面具有明显优势,能够显著提升运维故障根因分析的效率。然而,目前这一技术也面临着一些技术和实施上的挑战:

算力消耗问题:在Multi-Agents系统中,随着Agent数量的增加,对计算资源的需求也随之增加。在资源有限的情况下,开发这些系统确实面临挑战。一种解决方案是采用量化模型来降低算力消耗,但这可能会对LLM的性能产生一定影响,需要根据实际效果进行权衡。

大模型幻觉问题:在Multi-Agents环境中,一个Agent的误判可能会引发连锁反应,影响整个系统的准确性。这不仅需要在单个智能体层面上纠正错误,还需要有效管理Agent之间的信息流动,防止错误信息在系统中扩散。一种有效的方法是使用经过微调的专属运维大模型,以降低幻觉问题的发生。

激发集体智能:目前,一些自我学习方法在单Agent上已经证明是有效的。我们可以探索将这些方法并将其引入到多智能体学习中,以充分利用Agent网络潜在的集体智能,增强多智能体之间的协同作用,进一步提升系统的整体性能。

总之,尽管Multi-Agents在智能运维领域具有巨大潜力,但要充分发挥其优势,还需要克服上述技术和实施上的挑战。通过不断的技术创新和优化,我们有望实现更高效、更可靠的智能运维解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值