最近和很多朋友在聊智算中心的建设方案,经常会拿“智算中心”和传统的数据中心、超算中心进行比较,很多非相关领域的朋友很难分清楚这三者的区别和联系,今天我们从不同的维度和大家分析一下它们各自的特点。
一、“数据中心”建设是体系化工程
“智算中心”作为最近两年兴起的新生事物,可以理解为是由传统“数据中心”演变而来,从本质上讲并没有太大区别,只因为承载的业务重心转为了人工智能的训练、推理等,因此命名为“智算中心”,介绍三类数据中心区别之前我们先从系统层面了解一下传统“数据中心”建设的组成。
1、L0层为土建工程:传统数据中心和智算中心的区别很小,因为智算建设算力密度提升,往往需要对地面的的承重有所增加,在建设成本和规划上没有太大变化。
2、L1为机房基础设施:可以理解为是给IT基础设施提供支撑的,机房的装修、供电、制冷、综合布线、机柜、液冷系统等都属于这一层,智算中心带来的变化是由低密向高密转变、由风冷向液冷(或者风液混合)转变、由低容量向高容量供电转变。
3、L2是IT基础设施:传统数据的三大件“计算、存储、网络”,在智算中心规划中也不例外,只是结构比例有所不同,体现在计算部分占比提升(约70-80%),以AI算力(主要是GPU)为主,网络也由传统的以太网方案转为RDMA网络(IB和Roce)为主,当然存储的性能容量也有变化。
4、L3和L4是平台和业务层:因为智算中心业务类型的转变(以AI大模型的训练和推理为主),所以在这两层会和传统数据中心有较大的变化(下文具体展开)。
二、“智算中心”的定义和概念
怎么去理解“智算中心”其实不同的领域对其定义也有所差异,下面图片是来自“中国通服数字基建产业研究院(华信咨询设计研究院)”对智算中心的两个定义,我们可以作为参考。
狭义的智算中心:是智能算力的物理载体,是“机房+网络+GPU 服务器+算力调度平台”的融合基础设施,是传统数据中心的增值性延伸。
广义的智算中心:是人工智能软硬件技术一体化的载体,是“算力+数据+算法”的融合服务,是促进 AI 产业化和产业 AI 化的重要引擎,是传统云数据中心的智能化升级。
三、“智算中心”与超算和传统数据中心的对比分析
数据中心的建设与社会的发展需求紧密结合,在不同发展阶段出现了通用计算数据中心、超级中心、智算中心等不同形态的算力基础设施,其本质也是从信息化走向数字化、智能化的过程。下面从建设的目的、功能特点、应用领域和投建运模式几个维度进行简单的对比分析:
1、建设目的:
-
智算中心:为人工智能大模型类的业务发展和应用提供支撑服务。
-
超算中心:为科学研究,科学计算提供支撑服务。
-
传统数据中心:降本增效,更低成本承载用户个性化、规模化业务应用需求。
2、功能特点:
-
智算中心:通过模型训练推理+智能体,赋能各行各业,重塑各行各业,实现质的提升。
-
超算中心:极高的计算精度和速度,通过超算集群大规模并行计算解决单机无法解决的任务。
-
传统数据中心:
资源池化、按需服务、快速灵活部署管理。
3、应用领域:
-
智算中心:机器学习、大语言模型、AI全模态创作、自动驾驶、生命科学领域等。
-
超算中心:
-
工业制造、生命医疗、模拟仿真、气象环境、天文地理等。大规模科学计算和工程计算任务。
-
传统数据中心:众多应用场景,应用领域和应用层级不断扩张,支撑构造不同类型的应用。
4、投建运模式:
-
智算中心:政府主导下的政企合作共建模式、多种资金方案组合,政府指导建设,企业承建运营;
-
超算中心:政府科研单位投资建设运营。
-
传统数据中心:行业巨头、政府投资建设、按需付费使用,以数据服务盈利,企业自主运营。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。