“十多年前有本书叫《人人都是产品经理》,但现在可能才真正到了「人人都是产品经理」的时刻。”
苹果商店付费榜Top1,这是一个不会代码的独立开发者用Cursor开发App的最佳战绩。
背后独立开发者用1.5个小时,开发并上架了包括「小猫补光灯」在内的2款iOS App,这个初代版本最高冲到了苹果商店“摄影与录像分类”免费排行榜前20。
后来因为抄袭者众,开发者一怒之下,选择的竟然是开发功能进阶的「小猫补光灯Pro」,收费1元。不料上架4小时内竟然冲上付费总榜第一。
它成功地告诉我们:
AI Native的独立开发者,一行代码不会写,真的能做出一个可上架的爆款。
小猫补光灯是什么?
提供不同明暗冷暖色调的纯色照片,通过简单调整参数来补光打光,以拍出更好看的照片。
免费版只能补光,收费的Pro版能够边补光边拍照。
△免费版(左图)和Pro版(右图)
毫无疑问,这是AI原生时代,一个典型小体量黑马的故事,人们喜闻乐见,充满好奇,因此App和陈云飞迅速被放到聚光灯下。
今天想从另一个角度来和大家一起看这件事——
AIGCer、AI Native独立开发者们,在这个想打造一款成功的产品,除了学会用AI工具,还应该学会些什么?
十问小猫补光灯后,我们梳理出一个答案,大致可以概括为:
产品思维、找准需求、后续运维。
(在不改变原意的基础上,部分内容做了书面化汇编整理)
Q1:Cursor出现前,做过AI-Native产品吗?怎么做的?
太长不看版:用OpenGPT做过小应用,用GPT-4做过Chrome插件,在GPT Store做过很多GPTs。
去年上半年出现了一个叫OpenGPT的平台,让用户可以基于ChatGPT使用和创建小应用。它和编程技术没有什么关系,你设定一些系统提示词,就可以让Chatbot有特别的功能。
当时我就创建了几个,做了一些尝试,觉得还挺有趣。
GPT-4出来过后,编程能力有了一定的提升,所以我用它做了几个Chrome插件——每个插件只需要三四个代码文件。
我通过对话的方式,让GPT-4吐出不同插件的文件代码,我复制后再按流程调试,有问题我再反馈给GPT-4,不停重复这个过程。
一段时间过后,我感受到了当时GPT-4编程能力的上限,就停止了。
去年11月,GPT Store上线,我做了得有三、四十个GPTs,有一个叫「更勤奋更聪明的GPT-4」上过GPT Store首页,至少Top 100的水平,使用量有200k以上。
实际上那些GPTs的用户量比我想象中高,有一波用户在相对高频地使用。
但是因为OpenAI没有实现原来的承诺给创作者分成,以及在工具能力上没有做任何迭代,因此能做的东西并没有太多。
所以我现在也没有在这个事情上去花很多精力,只是说把它作为一个工具去进行使用。
最近我又投喂了更丰富的资料和自己沉淀的一些经验,用它做了一个关于cursor的快捷答疑的GPTs,但用户数和使用量都大不如前了。
Q2:小猫补光灯会火了,最关键的点是什么?
太长不看版:愿意尝试+勇于发布+洞察需求+后续营销。
从女朋友偶然的建议——了解什么是补光灯——Cursor开做,前后决策没有超过五分钟的时间。
最开始其实很多开发者不看好。
**
我觉得最重要的点就是我可能有一些自己的想法,以及我自己愿意去做尝试,里面还有很多运气成分。只是说我做了很多事情,让这个运气有可能发生在我身上,我只是把自己丢给了运气。
如果非得说这个产品好的地方,那就是**它确实是一个很少见的、洞察的、很广泛,但是又没有被满足的需求。**这一点是这个产品的基础出发点。
然后后面有一些做得还不错的营销,看营销数据炸不炸;还有很多切中需求后,用户的支持成分在里面。
但这个过程中,首先我得愿意去发布产品,而且发布后的流量、用户都控制和管理得比较好。
Q3:怎么寻找用户需求?
太长不看版:观察很多用户在用什么非产品化的、比较麻烦复杂的方式来满足自己的需求。
小某书上经常有《大家觉得市面上缺什么App?》的帖子,我有时候倒是也会看到,但我确实不会太关心那底下评论的内容。
假如一个人现在想学AI编程,但自己压根没有发现需求的能力的话,我会建议ta可以找一些这样的帖子去看一看。
但从寻找真实需求的角度来说,我会对这种帖子比较谨慎。
对我来说,找需求不是说那些人需要什么,大多数人表达不清楚自己想要的是一个什么样的记账工具。
找需求应该是去观察,很多用户现在在用什么非产品化的、比较麻烦复杂的方式来满足自己的需求。
去发现“大家用很麻烦的方式来满足需求”或“现有的解决方案不是很好”,而不是用新的技术来解决旧的需求,比如用AI编程做记账工具什么的——这类东西已经太多了。
我没法特别信任用户“关于自己需要什么”这部分的东西,我会更关注用户的行为,已经在表达时传递出的信息,知道用户没有被满足的需求到底是什么。
Q4:App火了过后iOS/安卓/小程序出了很多山寨版,怎么看待?
太长不看版:早已预料,抄不走核心点;应该想到要把一切不利于我皆转化为有利于我;哪怕大厂出同款,和自己的目的也不同,没什么可竞争的。
我不算很愤怒。
山寨小猫补光灯的,一种是自己没有想法,然后别人出来火的东西要抄。我之前在互联网公司那么多年,知道这都是常态。
很多个人/小团队/小公司抄来说的话,产品抄得看起来很像,但因为不是从用户需求出发,抄的只是逻辑,所以抄都抄得非常差、非常糟糕,甚至都没有什么好竞争的。
他们做得实在太烂了,嗯。
非要说愤怒,我有一部分愤怒是对安卓混乱的应用生态。很多人完全百分百照搬名字和logo在各个应用商店上架,这个是让我愤怒的,因为这个行为绝对地欺骗了我的用户群体。
**
我更多是把这作为可以营销的一个事件。
抄袭的事情发生了,那我怎么应对和应用这个事情?我的思维方式其实是这样的。
包括看到很多山寨App后,我做了一个反常识的决定,上线新增拍照功能但收费1元的pro版。
我把“收费”这件事本身转变成了一次营销事件,所以前端的流量入口更宽了,更大的流量x更低的转化,带来了更多的下载量。
至于大厂做类似的产品(不管在我之前还是在我之后) ——我觉得可能有很多做相机App的公司会意识到女性用户需要补光灯来帮助拍更好的照片,但这个东西非常简单,大厂产品经理在公司内部去推进,说清楚它各方面的价值,是有一定的困难存在的。
同时大厂产品和小猫补光灯(或我做的其它产品)形态类似,但是要定位和要解决的问题不同。
举个例子,我之前有一个App叫拍照搜单词,我知道有些入局大模型的大厂/创业公司也有这个功能,有的比我出得还早。
△陈云飞“拍照识单词”(左)和阶跃星辰“跃问-单词卡”(右)
但他们更多是把它作为展示大模型能力的一个窗口,是在大模型能力基础上叠加的一个功能产品。
跟我做的这个事情不太一样。
所以大厂入局我没特别觉得有竞争。小猫补光灯也有大厂跟进了,但是对最近的下载量没有什么太大的影响。
因为我足够小,所以不至于被山寨或抄袭就死掉。
Q5:为什么会在小某书评论区和大家当“姐妹”?
太长不看版:让自己被实实在在地人格化,以及形成有趣的氛围,带动更多@和转发。
AppStore会显示个人开发者的全名,所以小猫补光灯在苹果商店上架后,用户是能看到我的名字的。
评论区有第一个、第二个、第三个用户喊出我的名字“陈云飞”之后,两件有趣的事情发生了:
首先,我不再是个独立开发者,我不再是个小红书博主,我被实实在在地人格化,拉近了和“姐妹们”的距离。
其次,这种meme元素让这条笔记本身有了更强烈的标签,形成了一个更有趣的社区氛围,很多人会因为这个氛围而在评论区@自己的朋友或者将笔记转发给自己的朋友(而分享,是小红书最最喜欢的一类数据)。
我后面大概做了几件事让它延续:
第一,我在评论区作为一个更真实的人,以及造了个和“姐妹们”站在一起的形象。
第二,拼命关注这个产品的问题和用户需求,在笔记爆火的两天内连夜改了三个版本。
不过我关注用户需求不是从现在才开始的,这是我一直以来的习惯。
追根溯源的话,其实跟我原来在大厂做用户研究的经历有关,就是到底怎么发现用户需求?到底什么样的需求是真·用户需求?
原本我在这些事情上就会做非常多的思考,是我的自有习惯。
Q5:怎么看待“陈云飞”也火了?
太长不看版:个人身上集中太多吸引人的标签和话题度。
小猫补光灯的走红,和我个人“陈云飞”的走红,其实是两件事。
产品在小红书上火了,其实是谁切中了对应群体的需求。后续肯定没有办法像原来那么爆,平台不可能每天、每周都给我原来那种级别的推流。
不过从现在实际的产品数据来说,是比较稳定的,用户增量也不错。很多用户是口口相传,所以我觉得小猫补光灯是会继续被传播的。
至于我个人的火,那就属于另一件事了。
只是说可能因为我这个人身上有一些要素,命中了一些契机,然后不同领域、圈层的媒体或者KOL,会从各自的角度去做对应的传播。
比如科技圈内传播我的新闻,是因为圈子里大部分是男性,并且大部分没有用过这个产品,或者大家绝对不理解这个产品有什么用?为什么要用?就他肯定不是这个产品的目标用户。
比如我原来不会编程,现在会用AI编程。现在很多人想尝试AI编程这个事情,那就自然会把我当做一个例子。
比如很多独立开发者都是工程师出身,不会洞察用户需求,那么也可以拿我当例子。
又或者说现在很多人想做自媒体,也可以拿我作为案例。
(而且陈云飞身上的tag不止这些,还有大厂十年,管理层裸辞;企业咨询顾问;过去一年是数字游民;裸辞至今靠AI赚了近百万。)
△陈云飞在维也纳去布拉格的火车上工作、在苏门答腊岛迭代小猫补光灯
一个人正好被搭建出来了一个还挺有趣、能传播的故事,很多传播方只是各取所需,拿我这个案例去进行传播而已。
不过这个事情肯定会很快就会过去。
Q7:怎么看待ChatGPT时刻和Cursor时刻?
太长不看版:不要以带入评价者姿态去看刚出现的AI工具/产品。
ChatGPT刚出来的时候,很多人会以一种评价者视角去使用AI,觉得这个AI现在很傻,很多问题都回答不了,或者某个AI比这个AI棒。
如果把自己带入一种评价者的姿态来看,就是很无聊,很没用,没有办法真正探索AI能力的边界。
其实真的,绝大多数人(应该95%以上)觉得AI不好用,是他们不会用——这是我的观点。
遇到问题的时候我会想办法。
比如Cursor已经比低代码还简单,但不会编程的人中途还是会遇到各种各样的bug。这时候我会思考,我应该通过什么方式去解决问题(而不是直接否定说它不好用)?
这是我对新AI工具/产品的态度。
Q8:现在会写代码了吗?后续有学习编程的计划吗?
太长不看版:仍然不会写,但以赛代练中。
我现在依然是一行代码都不会写。
不过我一直在学,但不是通过课程的方式学,而是在不断地通过实操,解决问题的方式学习和积累经验。
Cursor帮我写代码的过程中,本身就会让用户自己增加很多架构上的、代码常识的理解,我做越多项目,越理解如何实现。
我觉得这是下一代编程学习的新范式。
Q9:怎么自视“不会写代码的独立开发者”这个身份?
太长不看版:现在可能才是“人人都是产品经理”的时刻。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。