编者按
国家社科基金用于资助哲学社会科学研究和培养哲学社会科学人才,重点支持关系经济社会发展全局的重大理论和现实问题研究,支持有利于推进哲学社会科学创新体系建设的重大基础理论问题研究,支持新兴学科、交叉学科和跨学科综合研究,支持具有重大价值的历史文化遗产抢救和整理,支持对哲学社会科学长远发展具有重要作用的基础建设等。
2024年营销领域立项的国社科项目有哪些主题?准备申报研究课题的学者们(含教师、博士后等)应该从这些立项项目中获得哪些参考借鉴?APMA关注国家科技创新方向,致力于为亚太营销领域的基础研究和原始创新贡献力量,推动科学研究成果服务于社会经济全面发展。在此,APMA特地推出国社科项目分享专栏。
本期,我们邀请华南理工大学杨晨老师分享获资助主持的青年项目“医疗人工智能患者信任体系构建及实现路径研究”的主要内容。
课题缘起:
2022年5月23日,顶刊《柳叶刀》发布的一项研究显示,全球医疗卫生工作者人数短缺情况令人望而生畏。截至2019年,若以全民健康覆盖(UHC)可及至少80%的人为标准,全球还缺约640万名医生、3000万名护士与助产士、290万名药学卫生人员。这些严峻的数据凸显了在医疗保健领域解决可及性、公平性、质量与安全问题的必要性。而医疗人工智能的表现可以达到专家级精准程度,并大规模地提供具有成本效益的医疗服务,为解决这一难题提供了优秀的解决方案。例如,“小布AI医生”将国家儿童医学中心和复旦大学附属儿科医院积累的诊断经验浓缩提炼,不断学习以提高其在儿科门诊辅助诊断的决策能力,给患儿及其家庭带去更优质、可得、普惠的医疗服务,弥补了儿科医生不足。上海东方医院的医生伴侣,可协助完成病史记录、初步诊断建议和分析,以及治疗方案推荐。清华大学智能产业研究院团队打造的首家“AI医院”Agent Hospital正在进行内测,将于年底正式上线,并于明年上半年对公众开放。目前构建的42位AI医生分布在儿科、耳鼻喉科等21个科室,覆盖了300余种疾病。”国家也在政策上大力推动医疗人工智能的运用。2023年中共中央办公厅、国务院办公印发《关于进一步完善医疗卫生服务体系的意见》中指出,发展“互联网+医疗健康”,加快推进包括人工智能等在内的数字技术在医疗卫生领域的应用。
然而,人工智能在医疗行业的广泛运用,除了政府、医院和人工智能企业在技术上的大力推动外,还需要建立患者对医疗人工智能的信任。2019年发表于Journal of Consumer Research(UTD)的一篇论文研究结果表明,从皮肤癌筛查到心脏起搏器植入手术,当医疗服务由人工智能而非人类医疗服务提供者提供时,患者利用该服务的可能性较低,并且希望为之支付更少的费用。他们更喜欢让人类医疗提供者来执行服务,哪怕这意味着出现误诊或手术并发症的风险更大。
因此,探讨如何构建患者对人工智能医疗服务的信任,提高医疗人工智能的广泛采用,成为多方共同关注的话题。
Q
课题聚焦哪些问题?
本课题重点回答如下三个问题:(1)应从哪些维度来构建医疗人工智能的患者信任体系?该体系建立后,对患者产生哪些影响?(2)医疗人工智能患者信任体系的实现路径为何?(3)多个利益方在构建医疗人工智能患者信任体系过程中应采用哪些对策组合?
Q
课题立项有何意义?
(1)学术价值
拓展基于中国医疗实践经验的人机信任研究,构建医疗人工智能患者信任体系的机制理论模型,进而重点分析人工智能患者信任体系的实现路径及应用场景异质性。基于中国实际国情,探讨多个利益方实现人工智能患者信任体系的对策设计。
(2)应用价值
本课题关于患者人工智能信任体系的构建,有助于加快推进人工智能技术在医疗卫生领域的应用,助力我国医疗提质增效,缓解优质医疗资源不均衡的问题,促进全民健康。同时也有助于加快人工智能场景应用,促进人工智能产业发展,推动经济高质量发展。
Q
课题将如何展开?
本课题以加快人工智能技术在医疗领域的应用为目标,研究如何构建医疗人工智能患者信任体系、实现路径及对策设计。选取3个核心内容进行探讨:
其一,医疗人工智能患者信任体系构建及影响效应。基于信任理论,构建医疗人工智能信任的三维度体系,以及它对患者行为的短期、中期和长期影响。
其二,医疗人工智能患者信任体系的实现路径。分析在不同医疗场景下,患者对医疗人工智能形成信任的多条路径。
其三,多个利益方构建人工智能患者信任体系的对策设计。从多个利益相关者的角度,提出构建人工智能患者信任的对策,及其设计的过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。