“FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs”
金融市场对新闻和社交媒体高度敏感,情绪分析在现代金融预测中至关重要。传统情绪分析通常将情绪分为正面、负面和中性,LLMs的出现提升了情绪分析的准确性和解释能力。
本文提出了一种增强LLM驱动的基于情感的股票价格预测方法。通过提高股票价格的粒度和提供短期/长期分析指令,增强了对新闻的上下文理解。评估新闻传播的聚类,并结合市场影响以改善预测。实验结果显示,方法实现了63%的二分类准确率,相较于55%的基线有显著提升,尤其在高聚类比(>50%)下表现更佳。
论文地址:https://arxiv.org/pdf/2412.10823
摘要
金融情感分析对理解新闻对股价的影响至关重要,LLM因其文本分析能力被广泛应用。现有模型主要关注新闻内容,忽视传播范围,影响短期股价预测的准确性。当前方法缺乏足够的上下文数据和明确的提示,限制了LLM的解读能力。
本文提出一种数据驱动的方法,通过整合新闻传播范围、上下文数据和明确指令,提升LLM的情感基础股价预测。通过聚类公司相关新闻评估其影响力,丰富提示信息。构建指令调优数据集以微调LLM,实验结果显示预测准确性提高了8%。
简介
金融市场对新闻和社交媒体高度敏感,情绪分析在现代金融预测中至关重要。传统情绪分析通常将情绪分为正面、负面和中性,LLMs的出现提升了情绪分析的准确性和解释能力。现有方法多依赖单一新闻内容,忽视新闻传播的广度和上下文数据,限制了LLMs的解读能力。
本文提出一种新方法,通过聚类公司相关新闻,评估新闻的传播范围和影响,增强短期股价预测的准确性,实验结果显示预测准确性提高8%。
相关工作
利用文本和新闻进行股票预测并不新颖,已有研究使用推文和历史数据进行价格预测。大型语言模型(LLMs)能够更深入理解金融文本,捕捉新闻数据中的复杂关系,提升股票价格预测的准确性。LLMFactor(2024)通过知识引导提示实现短期预测,提供实时可解释的见解。Elahi和Taghvaei(2024)结合金融数据和新闻,采用检索增强技术进行3-6个月的长期预测。
本研究专注于数据准备过程,考虑新闻传播对股价的影响,为LLMs提供更精确的指令。采用标准的LLMs指令调优框架,基于数据组织作为基线,展示显著改进,方法具有广泛应用潜力。
问题设置和总体框架
目标。基于新闻情绪预测每周股票价格走势,分为12个标签(U1-U5和D1-D5+)。
依据。上周股票价格、近期新闻、公司基本面(季度更新,报告发布后三周纳入)。
模型输出。识别2-4个重要因素,分为[积极发展]和[潜在担忧],并提供[预测与分析]。
重点。聚焦数据处理和提示工程部分,遵循金融分析的标准框架。
方法
数据处理
高粒度股票价格信息(HG)。通过引入每日收盘价和收益,提升预测性能,减少计算不确定性,并实现价格变动与新闻事件的精确时间对齐。
新闻聚类(HG-NC)。针对每周超过200篇新闻的处理,采用聚类方法以提高效率,捕捉新闻影响的两个维度:报道频率和时间跨度。
-
数据收集:从Finnhub API获取每周金融新闻数据。
-
主题聚类:使用Sentence Transformers和BERTopic进行新闻主题聚类。
-
聚类质量评估:
-
高凝聚力聚类(相似度>0.6):选择中心文章作为代表,保留元数据。
-
低凝聚力聚类(相似度≤0.6):选择中心附近文章,限制主题大小为2。
-
主题选择策略:高凝聚力聚类少于6时,补充最多4个低凝聚力聚类,以确保信息覆盖。
聚类方法优势。通过BERTopic和余弦相似度评估,有效压缩大量新闻为代表性样本,量化新闻传播,增强股票价格预测能力。
提示工程:上下文增强的指令
为了适应新的数据格式,需增强对每日股票信息和新闻传播的分析。
HG部分,要求区分短期和长期新闻影响,短期新闻的影响通常在同周内已反映在股价中。
HG-NC部分,在HG基础上,构建新闻组件,使用代表性文章及其元数据,提供分析新闻传播对股价影响的指导。
指令微调
训练数据集将结构化输入(公司介绍、历史股价、相关新闻、公司基本面)与GPT-4o生成的分析配对,基于已知未来走势。移除提示中的真实股价后,利用该数据集对Llama3-8B进行微调,以预测每周股价变动。评估指标包括数值准确性和推理质量。
表现评估
评估模型性能的两个关键指标:股票预测的二分类准确率和推理质量的ROUGE分数。
比较三种方法:基线方法、提高股票价格粒度的HG方法、HG-NC方法。
股票走势预测中的二分类精度
评估模型预测股票价格方向的能力,使用二分类准确率指标,数据集包含380个观察值,涵盖20家公司。模型准确率从0.550提升至0.592,显示出持续改进的趋势。对时间因素的关注增加,“长期”关注度从15.0%升至69.8%,“短期”从7.5%升至56.6%。LLM有效区分短期与长期新闻影响,平衡两者在股票价格预测中的作用。通过新闻聚类结果,准确率进一步提升至63%,验证了增强LLM捕捉市场动态和新闻传播影响的假设。
ROUGE推理质量评价分数
由于数据集庞大,无法为每个实例获取真实情感分析,采用自动评估指标评估模型输出质量。使用ROUGE分数(ROUGE-1、ROUGE-2、ROUGE-L)评估推理质量,较高分数表示与参考文本的更好对齐和更广泛的内容覆盖。
HG-NC方法在所有指标上均优于基线和HG方法。分析输出中的预测与分析组件,强调模型在情感分析中权衡正负因素的能力。HG-NC方法更好地捕捉和阐述市场因素之间的复杂互动。
案例研究:波音公司
以波音公司为案例,比较HG方法和HG-NC方法的预测性能,HG-NC方法准确率为63.2%,HG方法为52.63%。通过高一致性聚类中文章的比例(平均相似度>0.6)评估聚类性能,发现聚类性能与预测性能之间存在强相关性。在HG-NC方法优于HG的7个案例中,高一致性聚类比例大多超过50%;当比例低于40%时,预测性能下降,表明市场信息捕捉不足。
总结
本文提出了一种增强LLM驱动的基于情感的股票价格预测方法。通过提高股票价格的粒度和提供短期/长期分析指令,增强了对新闻的上下文理解。评估新闻传播的聚类,并结合市场影响以改善预测。开发了指令调优数据集,以微调LLM,提高短期股票价格预测的准确性。
实验结果显示,方法实现了63%的二分类准确率,相较于55%的基线有显著提升,尤其在高聚类比(>50%)下表现更佳。研究强调了丰富的上下文数据和传播意识方法在提高预测准确性中的重要性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。