论文地址:https://arxiv.org/pdf/2412.18511
项目地址:https://bitmobility.github.io/LGDRL/
本篇论文提出了一种基于大型语言模型(LLM)引导的深度强化学习(DRL)框架,用于解决自动驾驶车辆决策问题。
该方法通过将LLM专家集成到DRL中,为DRL的学习过程提供智能指导,并利用创新的专家策略约束算法和新颖的LLM干预交互机制来提高DRL决策性能。
实验结果表明,该方法不仅在任务成功率上取得了优异的表现,而且显著提高了学习效率和专家指导利用率。此外,该方法还使DRL代理能够在没有LLM专家指导的情况下保持一致且可靠的表现。
论文方法
1.1 方法描述
该论文提出了一种基于深度强化学习(Deep Reinforcement Learning)的自动驾驶决策制定问题解决方案。主要组件包括状态空间、动作空间和奖励函数,并通过形式化定义了行为决策制定问题。该方案将自主驾驶车辆的行为决策制定过程建模为马尔可夫决策过程(Markov Decision Process),并利用深度强化学习算法来优化自动驾驶车辆的决策制定策略。
1.2 方法改进
该方案采用了专家指导的深度强化学习算法,即在训练过程中引入了一个车道驾驶专家系统,以提供行动建议。同时,为了提高算法的效率和性能,该方案还提出了约束条件下的深度强化学习算法,通过限制深度强化学习策略与车道驾驶专家系统的差异,使得深度强化学习策略更加接近车道驾驶专家系统的策略。
此外,该方案还设计了一种新的交互机制,称为“专家干预”,用于替代标准的深度强化学习与环境之间的交互方式。当深度强化学习策略产生危险行为时,专家干预机制会替换深度强化学习策略的行动建议,从而避免潜在的风险。
1.3 解决的问题
该方案解决了自动驾驶中的行为决策制定问题,通过对深度强化学习算法进行改进和约束,以及引入车道驾驶专家系统和专家干预机制,提高了自动驾驶车辆的决策制定能力和安全性。这种方法可以应用于实际道路测试和自动驾驶汽车的研发中。
论文实验
本文主要介绍了在高速公路驾驶场景下,使用深度强化学习(DRL)算法实现自动驾驶的研究。作者首先构建了一个实验场景,并引入了几个基准方法进行比较。然后,详细阐述了DRL算法的实现细节。
实验场景中包括四个车道,每个车道长1000米,宽4米,限速为30米/秒。车辆初始速度为20米/秒,目标点位于最右侧车道500米处。同时,周围有30辆随机位置和速度的其他车辆。实验过程中,每一步的时间间隔为0.05秒,总时间为20秒。这些参数被总结在表II中。
基准方法分为三类。第一类是Vanilla-SAC,没有专家指导,直接使用标准DRL算法进行训练。第二类包括SAC+RP和SAC+BC,这两种方法都使用在线专家,在学习过程中实时提供干预。第三类是SAC+Demo,使用离线专家,即预先收集的专家演示数据,不参与学习过程中的干预。所有基准方法均使用相同的神经网络架构,并在PyTorch上使用Adam优化器进行训练。实验结果如图7所示。
通过比较不同DRL方法的训练曲线,可以发现LGDRL在成功率和回报率方面表现最好。此外,LGDRL还可以在没有任何人类干预的情况下独立完成任务。因此,LGDRL是一种高效且可靠的自动驾驶解决方案。
论文总结
论文提出了一种新颖的LGDR框架,用于解决自动驾驶车辆的车道变道决策问题。在该框架中,设计了基于LGD的驾驶专家来提供指导,并引入了专家约束条件以更有效地利用专家知识。实验结果表明,所提出的LGDR方法在训练和测试性能方面均优于其他基准方法,具有较高的效率和准确性。
未来将进一步探索将该框架应用于其他复杂驾驶场景的可能性,研究如何结合其他技术(如多模态数据处理)来进一步提高自动驾驶系统的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。