小红书语音识别新突破!开源FireRedASR,中文效果新SOTA

语音识别(ASR,Automatic Speech Recognition)是一种将语音转化为文字的技术,被广泛应用于智能语音交互和多媒体内容理解领域,例如语音助手、语音输入、视频字幕等场景。衡量中文 ASR 性能的主要指标是字错误率(CER,Character Error Rate),该值越低,表示模型的识别效果越好。

近日,小红书 FireRed 团队正式发布并开源了基于大模型的语音识别模型 ——FireRedASR,在语音识别领域带来新突破。在业界广泛采用的中文普通话公开测试集上,FireRedASR 凭借卓越的性能取得了新 SOTA!FireRedASR 在字错误率(CER)这一核心技术指标上,对比此前的 SOTA Seed-ASR,错误率相对降低 8.4%,充分体现了团队在语音识别技术领域的创新能力与技术突破。

  • 论文标题:FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration

  • 论文地址:http://arxiv.org/abs/2501.14350

  • 项目地址:https://github.com/FireRedTeam/FireRedASR

FireRedASR 介绍

FireRedASR 系列模型包含两种核心结构:FireRedASR-LLM 和 FireRedASR-AED,分别针对语音识别的极致精度和高效推理需求量身打造。团队开源了不同规模的模型和推理代码,旨在满足全面覆盖多样化的应用场景。

FireRedASR-LLM 和 FireRedASR-AED 的结构如下图所示:

  • FireRedASR-LLM(左):结合了文本预训练 LLM 的能力,为极致的 ASR 准确率而生,适用于对准确率要求极高的应用场景。

  • FireRedASR-AED(右下):基于经典的 Attention-based Encoder-Decoder 架构,FireRedASR-AED 通过扩展参数至 1.1B,成功平衡了 ASR 语音识别的高准确率与推理效率。

实验及结果

下图是 FireRedASR 和其他 ASR 大模型的对比,在业界常用的中文普通话公开测试集上,FireRedASR-LLM(8.3B 参数量)取得了最优 CER 3.05%、成为新 SOTA!FireRedASR-AED (1.1B 参数量)紧随其后取得 3.18%,两者均比 Seed-ASR(12+B 参数量)的 3.33% 低、并且参数量更小。FireRedASR 也比 Qwen-Audio、SenseVoice、Whisper、Paraformer 取得了更优的 CER。

(aishell1 表示 AISHELL-1 测试集,aishell2 表示 AISHELL-2 iOS 测试集,ws_net 和 ws_meeting 分别表示 WenetSpeech 的 Internet 和 Meeting 测试集)

FireRedASR 不仅在公开测试集上表现优异,在多种日常场景下,也展现了卓越的语音识别效果。

如下图所示,在由短视频、直播、语音输入和智能助手等多种来源组成的 Speech 测试集上,与业内领先的 ASR 服务提供商(ProviderA)和 Paraformer-Large 相比, FireRedASR-LLM 的 CER 相对降低 23.7%~40.0%,优势十分明显。

值得一提的是,在需要歌词识别能力的场景中,FireRedASR-LLM 也表现出极强的适配能力,CER 实现了 50.2%~66.7% 的相对降低,这一成果进一步拓宽了 FireRedASR 的应用范围,使其不仅能胜任传统语音识别需求,还能在创新性的多媒体场景中大放异彩。

值得一提的是,FireRedASR 在中文方言和英语场景中同样表现不俗。在 KeSpeech(中文方言)和 LibriSpeech(英语)测试集上,FireRedASR 的 CER 显著优于此前的开源 SOTA 模型,使其在支持好普通话 ASR 的前提下,在中文方言和英语上也足够通用,进一步凸显了其鲁棒的语言适配能力。

好奇为什么 FireRedASR 能取得如此好的效果吗?可以参考 FireRed 团队公开的技术报告一探究竟,并且模型和代码已经全部开源(链接见上文)。

FireRed 团队希望通过开源能为语音社区做出贡献,促进 ASR 的应用和端到端语音交互的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在需要帮助用户寻找开源语音识别模型的下载方法。首先,用户的需求很明确,他们需要开源语音识别模型,并且想知道如何下载。根据用户提供的引用内容,有四个相关的资源:Vosk、FireRedASR、WeNet和Kaldi的CVTE v2模型。我需要逐一分析这些引用,整理出每个模型的下载步骤和特点,确保信息准确。 首先看引用[1]提到的Vosk模型。用户需要去官网下载对应的模型,根据语言需求选择。安装Python库的部分可能需要注意版本兼容性,但用户的问题主要是下载模型,所以重点放在官网步骤上。Vosk支持多语言,适合离线部署,这点需要强调。 接下来是引用[2]的小红书FireRedASR,这是中文SOTA模型,应该去他们的GitHub仓库下载。用户可能需要知道如何访问开源项目,比如通过GitHub链接,可能需要克隆仓库或者下载预训练模型。同时,该模型基于大模型,适合高准确率需求,但可能需要较高的计算资源,不过用户提到优先考虑准确率,所以这点很重要。 然后是引用[3]的WeNet,支持实时流式识别,适合CPU环境。用户的需求里有提到需要实时识别和CPU部署,所以WeNet非常符合。下载方式可能包括从GitHub获取代码和模型,或者使用预训练模型。需要指出其适合中文场景,并且部署步骤可能涉及Python或C++的实现。 引用[4]中的Kaldi CVTE v2模型,用户可能需要访问特定的Kaldi项目页面或作者的专栏来获取。Kaldi本身是一个成熟的语音识别工具包,但部署可能相对复杂,适合有经验的用户。需要说明该模型的中文支持情况以及是否需要额外的训练步骤。 现在需要将这些信息整理成清晰的步骤,每个模型分点说明,包括下载方法、特点和适用场景。同时要注意用户提到的需求,如实时识别、CPU部署中文支持等,确保每个模型的优缺点对应这些需求。此外,用户可能需要安装指南和注意事项,比如Python库的安装或环境配置,但用户的问题主要是下载模型,所以可能需要简要提及相关依赖。 最后,生成相关问题时要围绕用户可能进一步的问题,比如如何部署、性能优化、与其他模型对比等。确保问题覆盖用户可能的后续需求,帮助他们深入理解各个模型的选择和使用。 需要检查每个步骤是否准确,特别是引用来源是否正确,避免错误的信息。例如,确认Vosk的官网地址,FireRedASR开源仓库是否存在,WeNet的文档链接是否有效等。如果有不确定的地方,可能需要提示用户参考官方文档或社区支持。 总结来说,回答的结构应该是先列出各个模型,每个模型包括下载步骤、特点和适用场景,然后给出相关问题。确保使用正确的中文表达,避免术语错误,并且按照用户的要求使用合适的LaTeX格式,但在这个问题中可能数学公式较少,主要注意代码块和引用标识的正确使用。</think>### 开源语音识别模型下载指南 以下是主流开源语音识别模型的下载方法和特点,根据需求选择适合的模型: --- #### 1. **Vosk 模型** - **下载步骤**: 1. 访问 [VOSK Models 官网](https://alphacephei.com/vosk/models) 2. 根据语言需求选择模型(例如中文模型 `vosk-model-cn-0.22`)[^1] 3. 下载并解压到本地目录 - **特点**: - 支持多语言(包括中文) - 提供 Python、Java 等接口,易于集成 - 支持离线部署和实时识别 - **适用场景**: 轻量级本地部署,对计算资源要求低 --- #### 2. **FireRedASR 模型** - **下载步骤**: 1. 访问 [FireRedASR GitHub 仓库](https://github.com/FireRed-team/FireRedASR)(需关注官方开源动态) 2. 根据文档下载预训练模型或通过命令行克隆仓库 ```bash git clone https://github.com/FireRed-team/FireRedASR.git ``` - **特点**: - 中文识别效果达到 SOTA(当前最优)[^2] - 基于大模型训练,适合高精度场景 - **适用场景**: 需要高准确率的中文语音识别 --- #### 3. **WeNet 模型** - **下载步骤**: 1. 访问 [WeNet GitHub 仓库](https://github.com/wenet-e2e/wenet) 2. 下载预训练的中文模型(如 `chinese_aishell2`)[^3] 3. 按照文档配置环境(需安装 PyTorch 和 ONNX) - **特点**: - 支持流式语音识别(实时处理) - 优化 CPU 推理性能,适合内网服务器部署 - **适用场景**: 实时语音转写(如客服对话、会议记录) --- #### 4. **Kaldi CVTE v2 模型** - **下载步骤**: 1. 参考 [Kaldi 中文语音识别专栏](https://example.com/kaldi-cvte)(具体链接需根据实际项目文档调整)[^4] 2. 下载 CVTE v2 预训练模型及声学/语言模型 - **特点**: - 基于传统 GMM-HMM 框架,成熟稳定 - 需搭配 Kaldi 工具链使用 - **适用场景**: 学术研究或已有 Kaldi 技术栈的项目 --- ### 部署注意事项 - **环境依赖**: 多数模型需 Python 3.7+ 和 PyTorch 库,部分需 C++ 编译(如 Kaldi) - **硬件要求**: - CPU 模型(Vosk、WeNet)适合资源受限场景 - GPU 加速可提升 FireRedASR 等大模型的推理速度 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值