7款优质Deepseek671B满血版测试+部署

干货持续——Deepseek(以下简称DS)满血版,节后如春笋般在各大平台上线,我测了七款不卡顿无限使用的671B满血版。

一、先上结论

1、经过我的测试DS和O1确实接近,对中文理解更深;

2、请放弃电脑本地部署,几万电脑配置达不到要求;

3、各大平台DC满血版,同一个问题,答案竟然不同;

4、在这其中选一款够用了,DS从此不用再折腾;

5、艺术家,设计师,视觉有要求的人,建议要有魔法;

二、测试结果

统一问题:“推荐一些靠谱的学习AI的网站和社群,酌情选一些在中国本土的,要求有全面的知识,开源免费,点击量大的,官方级别的”


第一梯队

【荐】chatbox + 硅基流动(综合最满意,缺点是慢)

【荐】纳米AI搜索 (提到了waytoagi 我认为靠谱)

【荐】perplexity (专业搜索AI+DC更完美)「魔」

第二梯队

【荐】flowith (排版满分,有内容模块)「魔」

英伟达 (回答还能告诉你需要魔法)「魔」

together ai (也是很全面 这个网页感觉东西多)「魔」

DS 官方网站(回答相比较而言在这一梯队)

第三梯队

腾讯云 (居然加入自动驾驶的内容)

只是在这个问题里表现不太好

说明:三个梯队的区别并不是非常大,我的评判标准是:1、语言理解精准度;2、推荐的内容质量;3、分类的方法;我这两年摸索的AI学习网站和社群较多所以有一定的判断。

三、喂饭教程

从简易到难

1、腾讯云:微信关注 “腾讯云AI” 公众号。

2、纳米AI搜索,手机app下载,我得吐槽界面太丑。

3、英伟达。我觉得英伟达是靠谱的,输入中文提问就行。(需魔法)

https://build.nvidia.com/deepseek-ai/deepseek-r1

4、flowith。这个网站我很爱啦,设计感好,可以做知识图谱,可创建知识库,还有中文社区,以及达人整理的内容,质量好推荐要去试试啊,需要魔法。

 https://flowith.io/blank 

5、together ai 是一个有很多模型很多开发者需要内容的平台

https://api.together.ai/playground/chat/meta-llama/Llama-3.3-70B-Instruct-Turbo

  • 专注领域

    提供高效的大模型训练、推理和优化服务,支持开发者与企业低成本部署AI模型(包括开源模型如Llama、Mixtral等)。

  • 核心产品

    云平台API服务(如用户提供的链接中的Llama-3.3-70B调用接口)。

    分布式训练框架,优化GPU资源利用率。

    开源模型微调工具链。

6、perplexity 。这是互联网上最早也公认做的最好的搜索AI,因为搜索强所以加载了dc以后出来的东西也就更靠谱,每天都有免费额度,需要魔法

https://www.perplexity.ai/

7、chatbox + 硅基流动。墙裂推荐推荐推荐!!

这个是把API调用到chatbox的方法,可以电脑部署,也可以手机部署,这个chabox的对话可以上传链接图片,而不是单纯的文字,所以很方便你在学AI的时候截图提问,发链接提问,以及给文档等等需求,相当有用!这是我用AI学习AI的方法,各种截图问怎么搞。

第一步:注册一个硅流的账号 (用我给你的地址申请可得14块钱 2000万 tokens)

https://cloud.siliconflow.cn/i/vKYER4Wm

这里要认证,用个人身份证,开启摄像头认证。

第二步:去设置一个自己的密钥

第三步:下载chatbox并安装,开始后,选下面一行 本地 (手机在app市场搜chatbox)

https://chatboxai.app/zh

第四步:在chatbox里设置,这一步最重要,错了就成不了

记住这里模型提供方要选 silicon flow 硅基流动的

然后填入在前面硅基流动复制的API密钥

再在下面下拉中选到R1,然后保存。

最后就成功啦

特别说明:硅基流动除了送你的tokens,足够你尝试体验了。但当你用的多了需要充值,这个本身也不贵,而且硅基流动的API可以接到更多地方,里面有很多模型,未来搭建自己的智能体工作流需要用的。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 部署 DeepSeek-R1 1.5B 模型并配置交互式界面 #### 环境准备 硬件环境要求如下: - **CPU/GPU服务器**:建议配置最新的 Intel/AMD CPU 或 NVIDIA 显卡。 - **内存**:建议 64 GB 以上。 - **存储**:模型文件约需 20 GB 存储空间,推荐使用 SSD。 - **网络**:应在企业内网环境中部署,并适当配置防火墙规则。 软件环境准备包括但不限于: - **操作系统**:CentOS 7.9+ 或 Ubuntu 20.04+ - **Python环境**:Python 3.8 及更高本 - **相关依赖**:需要安装 PyTorch 和 transformers 库等必要组件[^1] #### 模型下载与部署 对于 DeepSeek-R1 1.5B 参数模型的具体操作指南如下所示: ##### 下载 DeepSeek-R1 1.5B 模型 可以通过 ModelScope 或 Hugging Face 获取该模型。具体命令如下: ```bash # 使用 huggingface-cli 登录账号 (如果需要认证) huggingface-cli login # 克隆仓库到本地路径下 git lfs install git clone https://huggingface.co/deepseek-r1-1.5b ``` ##### 安装 XInference 平台及相关工具 为了更好地管理和调用模型,可以采用 XInference 这样的推理框架来简化流程。按照官方文档指示设置好对应的运行环境之后再继续下一步骤。 ```bash pip install Xinference ``` 接着启动服务端程序以便后续通过 API 接口访问已加载完毕的大规模预训练语言模型实例。 ```python from Xinference import start_server start_server() ``` #### 构建用户交互界面 为了让最终使用者能够更加便捷地同 AI 助手交流互动,可借助 Open WebUI 工具快速搭建起图形化的前端页面。此部分工作主要集中在 HTML/CSS/JavaScript 文件编辑以及前后端数据交换逻辑实现上;当然也可以考虑集成现成解决方案减少开发成本和时间投入。 假设已经成功集成了上述提到的服务,则只需简单几步就能让网页聊天机器人上线运作起来: 1. 将静态资源放置于合适位置; 2. 修改 JavaScript 中请求接口指向正确地址; 3. 启动 HTTP(S) Server 提供在线浏览支持功能。 最后测试整个系统的连通性和稳定性确保一切正常后即可正式投入使用为企业内部人员提供优质高效的人工智能辅助决策能力提升工作效率和服务质量水平.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值