【教程】基于DeepSeek-R1的个人AI知识库,全本地部署,可断网使用

从ChatGPT上线开始,我就有了一个想法,打造一个个人知识库,它可以充当我的第二大脑,记住我的尽量多的信息(包括隐私信息)。

无论是我每天的琐碎事务,还是重要的决策和回忆,它都能存储并快速检索。当我问它“我去年5月做了什么?”时,它不仅能够从知识库中找到当时的记录,还能结合上下文和细节,帮助我回忆起那些可能遗忘的瞬间。

但要实现这个想法,用在线服务肯定是不行的,我需要它完全本机运行。现在,有了可完全本机部署的deepseek-r1和bge-m3,加上界面优雅的Cherry Studio,是时候实现它了。

注意1:以下步骤在苹果M系列芯片,16G内存的MacBook Pro上实现。由于Mac拥有统一内存和显存,类似配置的PC除了16G及以上的内存外,还需要有额外的显存分配才能正常运行。

注意2:先不要吐槽非满血版deepseek-r1的模型效果,可以先学会怎么本机部署,往后开源的模型会越来越好的(一年前谁能想到现在端侧大模型效果这么好了呢)。

直接开始:
**1、下载安装ollama:**https://ollama.com/download

按自己的电脑系统选择即可,安装后,双击启动。

2、下载DeepSeek-R1:14b模型(9GB)

这里我选择了我的设备能运行的最大尺寸的模型,14b参数的这个。打开终端,输入命令:ollama run deepseek-r1:14b

回车之后,模型就开始下载啦,确保电脑硬盘还有足够的剩余空间(下图示意是7b参数的版本,共4.7GB)

等待模型下载完成后,当你看到 >>> 提示符,这时已经可以跟模型聊天啦,让我们来试试:

到这里,如果你不需要知识库,你已经完成了deepseek-r1模型的本地部署,是不是很简单?只是这个聊天界面在命令行中,也无法保存跟deepseek的聊天记录。

**拓展阅读:**更多尺寸的模型下载命令可以在这里找到:https://ollama.com/library/deepseek-r1

也可以在顶部Models菜单中找到其他的开源模型,比如阿里的通义千问qwen2.5、智谱的GLM-4、Meta的Llama3.2等等,有兴趣都可以试试,Ollama支持多个模型同时安装。

查看已安装模型的命令:ollama list

删除已安装模型的命令(rm后是要删除的模型名称):ollama rm deepseek-r1:14b

3、下载embedding模型 bge-m3(1.2GB)

打开终端,输入命令:ollama pull bge-m3

等待下载完毕,看到success,关闭终端就行了。embedding嵌入模型的作用是把知识库里的文档内容转化为便于搜索的向量,这里只需要理解它是用来处理知识库文档数据的即可。

4、安装Cherry Studio

访问:https://cherry-ai.com,根据电脑系统选择相应版本下载安装

Cherry Studio是一款支持本地知识库的AI客户端,其实同类产品还有很多,比如Chatbox(有联网搜索和手机端)、Enchanted(简洁轻量)、OpenWebUI(可供局域网内多人访问)等等,有兴趣的同学可以挨个体验下。

到这里我们需要下载和安装的东西都完成了,接下来断开网络也可以使用。

5、配置模型提供商:Ollama,添加LLM语言模型和embedding嵌入模型

启动Cherry Studio,依次点击左下角设置-模型服务-Ollama,开启Ollama,API地址保持默认,点击管理按钮,可以看到会自动读取到我们刚才下载的deepseek-r1:14b和bge-m3[嵌入] 两个模型,点击添加。

这样我们就把Ollama下载的两个模型配置到Cherry Studio中了。

**拓展阅读:**在模型服务的设置这里,可以看到Cherry Studio已经支持的模型提供商,推荐大家还可以添加一个部署在siliconflow硅基流动的DeepSeek-R1满血版,但与这个模型产生的交互都需要连接网络,你的问题会被发送到siliconflow硅基流动的服务器,使用满血版会按实际用量计费,你可以根据自己的实际情况选择是否使用。配置时需要用到的api密钥,可通过这个链接https://cloud.siliconflow.cn/i/r2Z3LRPQ注册获取,现在新注册会有免费额度赠送。

6、创建知识库,导入本地文档

点击Cherry Studio左侧的知识库按钮,再点击“添加”,给知识库取个名字,嵌入模型选择我们刚才下载的bge-m3,点击确定后,即可创建出一个知识库。

这时可以添加文件或者直接拖拽文件到知识库里,支持pdf、docx、pptx、txt等格式,把个人简历、日记、工作文档、甚至微信聊天记录(前提是手动导成文本)放进来都可以。

我们先加一两个文档试试,可以看到加入后,每个文档都会经过嵌入模型的处理,有个蓝色小点loading过程,如果看到绿色小勾,就代表这个文档可以被deepseek检索到了。

此时,DeepSeek就学习了你上传的文档。这是一种被称为RAG的技术,AI收到你的问题后,会先到知识库里找出最相关的几个片段,然后结合它自有的知识,组织一段新的表述回复给你。这样就能把AI大模型原本训练时没有的知识(比如关于你个人的信息)告诉它。

好啦,现在你电脑上的DeepSeek-R1就拥有了知晓你私人文档的知识库:回到聊天界面,顶部选择deepseek-r1:14b|Ollama这个模型,输入框下方知识库按钮选中刚才创建的知识库,现在试试询问一个DeepSeek本身不知道的问题——

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

对于如何在本地部署DeepSeek-R1知识库,当前的信息资源集中更多在于广泛性的系统设计与扩展性指导[^1]。然而,特定于DeepSeek-R1知识库部署指南可能不会被涵盖在此类通用资料中。 通常情况下,在本地环境中设置复杂软件如DeepSeek-R1知识库涉及几个关键方面: ### 配置环境 确保拥有适合运行目标应用的操作系统版本和支持工具链。这包括但不限于Python解释器、pip包管理器以及其他依赖项。 ### 获取源码或安装包 从官方渠道获取最新稳定版的DeepSeek-R1项目文件或是二进制分发包。注意遵循开发者提供的下载指引来选择正确的版本。 ### 安装依赖关系 按照README.md或其他形式发布的文档说明完成必要的第三方库和框架的安装工作。这部分操作往往通过执行`requirements.txt`中的指令自动实现。 ```bash pip install -r requirements.txt ``` ### 数据初始化 准备并导入初始数据集到应用程序的数据存储层内。此过程可能会涉及到数据库迁移脚本的执行以及测试/样例记录的加载。 ### 启动服务 最后一步是启动所有必需的服务组件,并验证整个系统的正常运作状态。可以通过命令行界面或者图形化控制面板来进行这项任务。 尽管上述流程提供了一个大致的方向,但对于具体的DeepSeek-R1而言,建议直接访问其GitHub页面或者其他官方发布平台寻找最权威的第一手信息来源。如果存在专门针对该产品的快速入门手册或者是FAQ部分,则会更加有助于顺利完成部署工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值