一、核心概念与建设背景
-
理念
智慧医院以 “患者为中心、服务根本、管理支撑”,借智能化、互联互通与感知技术,实现多方互动,强化管理,提升医院综合实力。
-
政策驱动
依据多项国家规划和政策,旨在完善医疗服务体系,推进健康中国建设,提升服务公平性与可及性。
-
现实困境
存在 “三长一短” 问题,即挂号、看病等候、取药排队时间长,医生问诊时间短,亟待改善。
二、建设原则
-
整体规划,分步实施
物联网技术应用广泛致系统繁多、数据交互复杂,需整体规划以避信息孤岛和重复建设。
-
规范化标准化
借鉴经验教训,采用先进成熟技术,结合医院实际,依软件工程标准设计软件,确保系统先进实用。
-
技术先进与成熟统一
平衡新技术与成熟技术,保障系统长期可维护与扩展,满足综合功能性能需求。
-
安全可靠
重视网络数据安全,防范外部非法访问、内部越权访问和数据损害,多层次提升安全等级。
-
智能化管理
搭建统一物联网平台,实现资产统一管理,结合物联网技术优化网络性能,提升管理效率。
-
易维护、管理与扩展
采用模块化、分布式设计,界面简洁,统一采购管理设备软件,确保系统易维护扩展。
三、系统架构与功能
-
系统架构
围绕医疗安全和管理精细化,构建医教研人财物六位一体信息化管理体系,涵盖多部门管理运营,建设数据中心和知识库,为决策提供支持。
-
功能架构
分层设计,决策层负责综合考评与分析;医疗管理层涵盖人、财、物管理及医疗质量控制;基本临床服务层提供诊疗、护理、检查检验等服务;基础层保障医院日常运行,各层协同提升医院运营效率和服务质量。
四、关键平台建设
-
智慧医院信息集成平台
“4116” 方案,实现高效诊疗、智慧医疗等目标,通过一张诊疗卡和集成平台,整合医疗管理、临床信息等六大应用,促进信息共享与业务协同。
-
医疗管理信息平台(HIS)
“4218” 方案,以 “病人为中心”,引入新服务模式,优化流程、全程监管,具备全自助、智能诊疗等特色应用,提升服务质量和运营效益。
-
临床信息管理平台
“5249” 方案,以电子病历为核心,实现结构化、智能化等目标,为医护人员、管理人员和患者提供服务,推动电子病历升级,助力科研教学。
-
医院运营管理平台(HRP)
“4218” 方案,实现业务、管理、决策和系统的全面升级,以精细化管理为导向,整合多部门管理功能,提升运营管理科学化水平。
-
移动物联平台
“3317” 方案,以电子病历为核心,借助移动技术,为医患提供便捷服务,实现移动诊疗、流程闭环和信息惠民,支持多平台多终端集成。
-
医联体信息平台
“3219” 方案,解决区域医疗协作问题,构建新型服务体系,实现医疗协同、远程医学和信息便民,具备统一数据中心、优化流程等特点。
-
智慧医院导诊平台
集中控制管理多媒体信息,对接 HIS 系统,优化就诊流程,在医院各区域提供多样化信息服务,提升患者就医体验。
五、应用解决方案
-
临床应用
涵盖门诊、住院、护理、检查检验等多业务,实现患者信息共享,支持精细化记录、智能质控和防控预警,提升医疗服务水平。
-
行政办公
整合日常办公与医疗业务管理,提供个人事务、信息沟通、知识管理等功能,促进系统间信息互通,提升管理效率。
-
专项管理方案
包括电子病历、健康体检、移动输液等多种解决方案,分别解决病历管理、体检业务、输液护理等问题,提升医院管理和服务质量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。