本文主要介绍基于 5G、物联网、SaaS、AI 的农业大数据综合解决方案,涵盖方案背景、技术支持、平台架构、应用场景、具体案例及效益分析等内容,旨在推动农业数字化、智能化发展,助力农业产业升级。
1. 行业背景与建设依据
1.1 政策推动智慧农业发展
党中央、国务院持续加大强农惠农富农政策力度,出台多项政策推动智慧农业发展。《全国农业现代化规划(2016 - 2020 年)》提出发展智慧农业,建立智能化网络农业平台;《国务院关于推进农业高新技术产业示范区建设发展的指导意见》《2019 - 2020 年全省现代农业产业园建设工作方案》等文件,积极促进现代农业产业园建设。例如湛江市国联水产(吴川)对虾产业园,就是在政策支持下发展的成果。
1.2 建设依据与目标
以广东省农业农村厅发布的《广东省现代农业产业园建设指引(试行)》为依据,结合 5G 通信技术,打造 “5G + 生产 + 加工 + 科技 + 营销(品牌)” 全产业链一张网,为国联水产提供信息化、综合化、数据化的数字水产综合应用服务,助力其在行业内保持领先地位。
2. 技术支持
该方案融合多种先进技术,为农业生产各环节提供有力支撑。物联网技术实现农业环境数据实时采集与设备智能控制;无人机技术用于植保、撒播等作业,提高效率;VR/AR 技术可辅助农业教学、培训与远程指导;卫星遥感技术获取大面积农田信息,监测作物生长;AI 技术进行数据分析、图像识别,实现精准种植决策;5G 技术凭借高速率、低延迟、大连接特性,保障数据快速传输,提升农业智能化水平。
3. 平台介绍
3.1 平台架构
平台采用分层架构,包括物联网传感(感知层)、网关(传输层)、SaaS 系统(应用层)和人工智能(决策层)。感知层通过各类传感器采集气象、土壤、虫情等数据;传输层利用无线局域网(RFID、WIFI、蓝牙)、运营商网络(3G/4G/5G)和低功耗广域物联网(RPMA)混合组网,确保数据稳定传输;应用层的 SaaS 系统涵盖多种农业应用服务;决策层基于人工智能分析数据,提供精准决策支持。
3.2 功能模块
3.2.1 数据采集设备
农眼作为行业集成度最高的气象监测基站,能采集多种气象数据;虫感知用于虫情数据采集;农眼全景实现 720 度全景图像监控;土壤传感器监测土壤温湿度、EC 值、微量元素;CO₂传感器监测二氧化碳浓度;PM 值传感器监测 PM1.0、PM2.5、PM10;水分传感器检测水质、含氧量、PH 值、微量元素等,为农业生产提供全面数据基础。
3.2.2 软件应用
农眼 ® APP 和气候云™AOS 是核心软件。农眼 ® APP 方便农场主实时查看数据、登记农事;气候云™AOS 对接农场农技部门,实现远程沟通指导,还能基于数据进行精准种植、虫害预警等。此外,可视化溯源、物联网电商小程序、新农村建设大数据服务平台和大数据监控调度中心,分别在农产品质量追溯、电商销售、农村建设管理和生产监控调度方面发挥重要作用。
4. 5G 智慧农业创新应用场景
4.1 标准化种植
通过对农作物生长关键因子(温、光、湿、PH 值、EC 值等)的数据监测,借助人工智能和大数据系统建模分析,根据不同植物生长周期需求,实现苗木、养护生态的数字化、网络化、智能化管理,帮助种植企业实现标准化种植。360° 可旋转视频监控云台实时抓拍图片,识别虫害、监控作物长势,电子围栏预警非法闯入。
4.2 5G 智能设备应用
4.2.1 5G 无人机植保
P 系列植保无人机专为植保作业设计,药箱最大装载量 16 升,喷洒效率达 210 亩 / 小时,采用智能离心雾化喷洒技术,可减少 30% 以上农药使用,降低 90% 水资源浪费,具备离心变量喷洒、RTK 厘米级定位、全自主作业等功能。
4.2.2 5G 无人驾驶农机
以自动驾驶农机为基础,融合传感器、车联网、电液控制、高精地图等技术,实现耕整、播种、植保、收获等农业生产全流程无人作业,依托互联网、物联网与大数据实现设备集成与互联。
4.3 大数据 SAAS 应用
为农业生产提供精准种植与产能提升方案、数据增值服务、品牌增值与产销对接系统,以及数据化、现代化管理工具,满足生产端、上行端、产业链和监管者的不同需求。
5. 解决方案及应用案例
5.1 数字农场远程监管
农场主借助农眼、虫感知、农眼全景等物联网硬件,远程监管作物长势、环境数据、虫害情况,管理农事活动和种植计划执行。通过 GIS/GPS 技术圈划地块、测算面积,利用电脑或手机 APP 实现实时远程监管。
5.2 生产管理与农事规划
5.2.1 生产计划制定
农场主基于气候云 AOS 管理农场投入品、农产品库存和人员,制定合理生产计划。
5.2.2 农技部门远程对接
气候云 AOS 对接农技部门,分享实时数据,实现远程指导。
5.2.3 农眼 APP 农事登记
工人依据生产计划和专家方案作业,通过农眼 APP 记录真实数据。
5.2.4 AI 识别实时监管
气候云 AOS 基于 AI 图像识别远程判断农事,确保按计划执行。
5.3 基于 AI 算法的作物产量预测
结合农眼实时监测数据、作物生长模型和环境数据,评估作物健康状况和生长周期,预估每个地块产量。
5.4 智能水肥系统
精准灌溉根据植物生长需求制定灌溉制度,设定自动化灌溉时间;实时监测预警结合多源数据,对不利环境及时预警;智能控制根据土壤含水率等数据自动控制灌溉施肥;专家决策系统依据土壤特质提供种植建议。
5.5 虫情智能监控预警
通过建设数据采集点,收集环境、虫害等数据,进行可视化展示和数据分析处理,生成虫害图谱、热力图,分析变化趋势,及时反馈虫害信息。
5.6 气象灾害预警
监测地块精准环境数据,关联大数据生成气象模型,数据异常时及时预警,农场据此响应处理,应对暴雨洪涝、干旱等灾害。
5.7 农产品可视化溯源与品牌打造
利用农业物联网和区块链技术,实现农产品全程可视化溯源,为各方提供品质标识、营销、把控和监管依据,提升品牌价值。
5.8 农业物联网电商平台与产销对接
打造农业物联网 F2B 电商平台,对接数字化农场和采购商,全程监控农产品品质,实现订单化农业,助力农民增收、产业升级,为贫困地区提供产销对接渠道。
5.9 观光旅游农业
数字农场借助物联网大数据进行网络推广,客户可实时了解农场信息;旅游农业结合智慧农业和乡村特色打造小镇,吸引游客;720°VR 体验让客户远程身临其境感受农场;旅游全景监管为政府提供智能调度平台,实现景点实时监管和图像 AI 识别。
5.10 应用案例
5.10.1 中化农业 MAP 示范农场
中化农业开展 MAP 模式试点,与联通合作建立多个基地。基于气候云 AOS 制定生产计划,农技部门远程指导;利用农眼和气候云 AOS 远程监管;通过可视化溯源打造品牌,实现农民增收。
5.10.2 郁南无核黄皮产业带
郁南县无核黄皮产业曾面临产量低、销路不畅问题。与联通合作后,“农眼” 覆盖产区,提供全产业链服务。可视化溯源提升产品售价,产量增加,还开启了网销模式。
5.10.3 江西年丰百果园
年丰百果园与联通合作,通过农眼智能监测系统实现数字化监管和精准种植指导,打造可视化溯源促进产销对接,发展旅游农业,包括认领农业和特色旅游体验,取得良好经济效益。
6. 项目经济效益与社会效益
6.1 经济效益
数字化运作提高农业管理水平,增加产量、提升效率、降低成本;可视化溯源打造品牌,提升农产品溢价;平台推动电商扶贫、产业扶贫,带动贫困户就业增收。
6.2 社会效益
保障食品安全,减少化肥农药残留;节约能源资源,建设精准种植模型;规避气象灾害,通过保险降低种植户风险;引导农业产业结构平衡发展,推进基础配套设施建设进度透明化。
7. 产品详情与优势
7.1 智能物联网设备
农眼智能监测基站、虫感知智能虫情采集器、农眼全景等设备,具备硬件集成度高、稳定性好、适用性强、数据精准度高、美观度高等优势,采用耐候性材料,模块化设计,适应极端环境和复杂种植条件。
7.2 气候云 AOS 农场管理平台
作为全球首款农业操作系统,采集多源数据,运用大数据分析和 AI 技术,提供精准种植、虫害预警等多种智慧农业解决方案。
7.3 人工智能算法
实现作物产量预测、病虫害识别和用工识别,为农业生产管理提供科学依据。
该农业大数据综合解决方案整合多项先进技术,构建完善平台体系,在多个应用场景发挥重要作用,带来显著经济效益和社会效益,为农业现代化发展提供有力支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。