智能客服搭建实战篇

下面以一个企业数字化服务的咨询公司的智能客服为例,介绍To B智能客服如何搭建。广义上来说,To C企业的智能客服应用更广,尤其是在售前咨询和售后争议解决方面,在数量级、AI场景丰富程度、SOP流程上都有更广的空间,但由于过往经验的限制(主要是知识库数据隐私限制),目前仅以To B企业数字化服务的咨询公司的智能客服来举例说明。除了COZE外,Dify也是一个很好的低代码的智能客服搭建工具,‌另外,‌LangChain‌和Ollama也是非常主流的应用开发框架或本地化 LLM 部署工具,并且可以搭配使用,Dify和Ollama的集成可以实现本地化部署与隐私保护,本次不做过多的技术选型讨论,下面是基于COZE的搭建流程说明(。

第一步:点击官网,并进行注册

img

第二步:选择模式(单/多agent)

img

第三步:配置对话流

img

img这一步是智能客服智能体里面的重要设置环节,通俗的来说,你可以配置流程,设置提示词,配置角色名称、角色设置、开场白。也可以设置调用的组件,其中知识库中,除了可以根据行业、产品、用户、业务场景、客服场景设计相应的内容,也可以设置召回量,最小匹配度等。

第三步:配置对话流 这一步是智能客服智能体里面的重要设置环节,通俗的来说,你可以配置流程,设置提示词,配置角色名称、角色设置、开场白。也可以设置调用的组件,其中知识库中,除了可以根据行业、产品、用户、业务场景、客服场景设计相应的内容,也可以设置召回量,最小匹配度等。 对于目前agent模式尚未实现,更多是是LLM的工作流形式,主流的workflow有以下几种形式,供大家参考,根据需要选择。 个人觉得路由器在智能客服分流上可能较为匹配,有较强的适用性。

1、链式工作流(Chain Workflow)模式:第一,每个大语言模型的调用顺序是固定的。第二,链式工作流上一个步骤的输出结果,作为下一个步骤的输入。

img

2、并行化工作流(Parallelization Workflow)模式:第一,同时调用多个大语言模型,并行处理,这些调用可以同时进行,无需等待其他大语言模型调用完成。第二,输出结果前,采用聚合器,整合之前调用多个大语言模型。

img

3、路由工作流(Routing Workflow)模式:第一,先由路由器判断任务分配给哪个大语言模型,路由器根据输入数据的特征、内容或其他相关因素,决定将数据发送到哪个大语言模型。第二,大语言模型根据路由器分配,处理相关任务。

img

4、编排器-工作者(Orchestrator-Worker)模式:并行化工作流和路由工作流的结合。第一,编排器分配任务给不同的大语言模型。第二,合成器将不同LLM调用的结果进行综合处理,生成输出。

img

5、评估器-优化器(Evaluator-Optimizer)模式:第一,生成器生成结果,评估器给出迭代优化策略。第二,生成器和评估器互相配合,持续优化,输出最优结果。

img

提示词工程这里说人话就是帮助机器更好的理解你的问题你的情景你要解决的问题你要了解的信息,你可以通过提示词,决定你的客服是活泼的、理性的,回复是简洁高效还是全面严谨,设置她的回复偏好等等。下面是现在较为主流的提示词工程模型

1、ICIO 框架:

• Intruction(任务):明确指出希望 AI 执行的具体任务,如“翻译一段文本”或“撰写一篇关于 AI 伦理的博客文章”。

• Context(背景):提供任务的背景信息,帮助 AI 理解任务的上下文,例如,“这段文本是用于公司内部会议的开场白”。

• Input Data(输入数据):指定 AI 需要处理的具体数据,如“请翻译以下句子:‘人工智能正在改变世界’”。

• Output Indicator(输出格式):设定期望的输出格式和风格,例如,“请以正式的商务英语风格翻译”。

2、BROKE 框架:

• Background(背景):例如,“你正在为一家初创科技公司撰写一篇关于其最新产品的新闻稿。”

• Role(角色):指定 AI 作为“新闻稿撰写者”,以便它能够以专业的角度回答问题。

• Objectives(目标/任务):给出任务描述,如“撰写一篇吸引人的新闻稿,突出产品的独特卖点。”

• Key Result(关键结果):设定回答的关键结果,例如,“使用正式和专业的语言,包含产品的主要功能和市场定位。”

• Evolve(改进):在 AI 给出回答后,提供三种改进方法,如“调整语言风格以吸引目标受众”,“增加产品使用案例”,或“优化结构以提高阅读流畅性”。

3、CRISPE 框架:

• Capacity and Role(角色):明确 AI 在交互中应扮演的角色,如教育者、翻译者或顾问。

• Insight(背景):提供角色扮演的背景信息,帮助 AI 理解其在特定情境下的作用。

• Statement(任务):直接说明 AI 需要执行的任务,确保其理解并执行用户的请求。

• Personality(格式):设定 AI 回复的风格和格式,使其更符合用户的期望和场景需求。

• Experiment(实验):如果需要,可以要求 AI 提供多个示例,以供用户选择最佳回复。

另外,召回量和调用的模型组件也可以根据自己的需求设置,说人话就是在召回量设置上越大,客服回复的字数通常会更多。调用模型组件越多并不是最好的,可能出现精准度不足的问题,带来幻觉问题,并且影响检索效率,出现回复时效较慢的情况。 这里值得注意且深度探索的还有业务逻辑、会话管理、知识库等设置和配置,即积木组件有了,搭成什么样的城堡,完全由我们自主决定。

第四步: 设置记忆 你可以设置变量,让回复基于用户特征,更加个性化;设置数据库;选择是否采用长期记忆

img

第五步:测试调优,与发布

**img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值