基于大语言模型的文本分类实践
大家可以思考一个问题:如何对微信公众号的文章进行分类?
课外论文:https://arxiv.org/pdf/2403.00165v1
1. 文本分类说明
文本分类是自然语言处理(NLP)中的一个核心任务,目标是将给定的文本分配到预定义的类别中。其应用范围广泛,涵盖了垃圾邮件分类、情感分析、新闻分类、主题建模等多个领域。
应用场景
- 垃圾邮件分类:通过分析邮件内容,将其分类为“垃圾邮件”或“正常邮件”。
- 情感分析:分析社交媒体或产品评论中的情感倾向,分为正面、负面或中性。
- 新闻分类:将新闻文章分配到特定类别,如“政治”、“经济”、“科技”等。
- 主题识别 :识别文章的主题或领域,例如判断一篇论文是属于计算机科学、医学还是文学等。
挑战
- 特征选择:选择有效的特征以提高分类准确率,特别是在文本数据中,特征的维度往往非常高。
- 类别不平衡:某些类别的文本样本可能较少,导致模型对这些类别的分类效果较差。
- 上下文理解:尤其是长文本,如何捕捉其上下文和语义信息是分类任务中的一大挑战。
2. 文本分类常用方法对比
文本分类方法可以大致分为传统方法和基于深度学习的方法。
传统方法
- 朴素贝叶斯(Naive Bayes):基于概率论的模型,适用于文本数据中的词汇独立性假设。它在数据量较小、特征简单的情况下效果较好,但对特征独立性的假设在实际中往往不完全成立;
- 支持向量机(SVM):一种基于边界最大化的分类算法,在高维数据中表现优异。SVM 能够找到最优的分类超平面,将不同类别的数据分开,但在处理大规模数据时可能会遇到计算效率的问题;
- 决策树:通过构建树形结构来对文本进行分类。决策树的可解释性较强,但容易过拟合,且在处理高维数据时性能可能会下降。
传统方法通常依赖人工特征提取,且在面对大量文本数据时,性能和可扩展性较差。
深度学习方法
- 卷积神经网络(CNN):主要用于局部特征的学习,适用于短文本分类。
CNN
能够通过卷积操作提取文本中的局部模式,但对于长文本的全局信息捕捉能力相对较弱; - 循环神经网络(RNN):擅长处理序列数据,适用于处理长文本和时序数据。RNN 能够考虑文本中的顺序信息,但在处理长序列时可能会出现梯度消失或梯度爆炸的问题;
- BERT:基于
Transformer
架构,能够捕捉上下文信息,广泛应用于各种文本分类任务。BERT
通过预训练和微调的方式,在大规模数据上取得了优异的性能。
深度学习方法通常能够处理复杂的非线性关系,并且能自动从数据中学习有效的表示,因此在大规模文本数据上表现优越。
比较
- 传统方法在数据量较小或特征较简单时通常较为有效,但随着数据量的增加和任务复杂度的提升,深度学习方法逐渐占据主导地位。
- 深度学习方法尤其是在大型数据集和复杂任务中能够表现出更强的泛化能力和更高的准确率。
3. 基于大语言模型的文本分类方法阐述
随着 大语言模型(如 GPT-4、BERT)的出现,文本分类任务也进入了一个新的阶段。大语言模型能够理解文本的上下文,并通过 zero-shot
或 few-shot
学习进行分类。
Zero-shot 学习(Zero-shot Learning)
Zero-shot
学习指的是在没有见过任何特定任务的训练数据的情况下,模型能够进行预测。大语言模型通过强大的语言理解能力,能够直接接受分类任务的描述,并对新的文本进行分类。
示例:
假设我们需要将一篇新闻文章分类为“科技”或“娱乐”,可以通过如下的 prompt
(提示):
任务:请将以下文本分类到合适的类别(科技、娱乐):
文本:苹果公司发布了最新款的iPhone手机,增加了许多创新功能。
模型会根据任务描述,自动判断文本属于哪个类别。
GPT-4o
的输出:
这个文本属于科技类别,因为它提到了苹果公司发布最新款的iPhone手机,并且讨论了创新功能。
Few-shot 学习(Few-shot Learning)
Few-shot
学习指的是在提供少量任务示例的基础上,模型能够根据这些示例进行推理。通过提供几个带标签的示例,模型能够理解如何分类新的文本。
示例:
任务:请将以下文本分类到合适的类别(科技、娱乐)。
示例:
1. 文本:苹果公司发布了最新款的iPhone手机,增加了许多创新功能。 类别:科技
2. 文本:新上映的电影《星际穿越》吸引了大量影迷观看。 类别:娱乐
文本:马云宣布阿里巴巴将在全球开设更多的人工智能实验室。
模型会根据示例,判断该文本属于“科技”类别。
GPT-4o
的输出:
类别:科技
这段文本提到的是阿里巴巴与人工智能相关的业务拓展,属于科技领域。
优势
- 灵活性:无需额外的标注数据,只需通过设计合适的提示就能直接进行分类。
- 无缝扩展:可以在不重新训练模型的情况下,迅速适应新的分类任务。
- 上下文理解:大语言模型能够捕捉长文本中的复杂语义信息,进行准确的分类。
高级技巧:使用“标注提示”
我们还可以通过“标注提示”(Label Prompting
)来显式地告诉模型每个类别的定义和特点,帮助模型更好地理解如何进行分类。
示例
任务:请将以下文本分类到合适的类别。类别如下:
1. 新闻:涉及实时的、当前事件的报道。
2. 科技:与新技术、设备或科学研究相关的内容。
3. 体育:与体育比赛、运动员、体育赛事等相关的内容。
4. 娱乐:涉及电影、电视、音乐、明星等内容。
文本:DeepSeek-V3/R1 的 Hosting 成本预估
GPT-4o
的输出:
这个文本涉及的是对 DeepSeek-V3/R1 的 Hosting 成本预估,属于技术类的内容,因此应该归类为 科技。
4. 总结
基于大语言模型的文本分类方法为处理文本分类任务提供了新的思路和解决方案。与传统的机器学习方法相比,大语言模型具有以下优势:
- 无需大量标注数据:通过
zero-shot
或few-shot
学习,模型可以在没有标注数据的情况下进行分类; - 灵活性高:通过调整
prompt
,可以适应各种不同的分类任务; - 强大的上下文理解能力:能够理解长文本中的复杂信息,进行更准确的分类。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。