在 Dify 上搭建 Agent,加强数据可视化效果

在 AI 应用领域,传统模型因数据孤岛受限,集成复杂且效率低。MCP 协议诞生,旨在提供统一、标准化且安全的数据连接方案,打破数据孤岛,简化集成流程,满足复杂场景需求,提升模型动态扩展与跨平台协作能力。

虽然市面上已经有许多 MCP 工具,并且 AntV 已开源数据可视化 MCP Server Chart[1] 可视化插件,但 MCP 插件在 Dify 中使用时,由于需要连接 SSE 插件等原因,过程显得颇为繁琐。为简化这一流程,我们开发了 AntV 可视化图表 Dify 插件并且已上架至 Dify 市场,希望每个人都能轻松创建炫酷的图表,告别复杂操作,让数据展示变得轻松又简单。

img

Dify[2] 市场新鲜出炉的 AntV 可视化图表来啦!快瞅瞅,让你的 Agent 摇身一变成为图表大师,分分钟生成超炫酷的可视化图表,惊艳全场!还不赶紧试试?

一键安装

Dify 插件市场 搜一搜「AntV 可视化图表」 然后轻松点几下完成安装。

img

image.png

简单搞定一个可视化应用

  1. 创建 Agent 应用

img

  1. 添加 AntV 可视化图表工具

img3. 快来试一下图表可视化能力

根据输入数据,输出可视化图表

请根据各地天气输出柱状图:杭州:30北京:25西安:28武汉:27吉林:10成都:27

image.png

直接询问 AI 生成可视化图表

请生成10天学习前端思维导图

image.png

还有更多可视化效果,请大家来试试…

总结

在 AI 应用平台中,很重要的概念就是 Tool / 服务,其中数据可视化在数据可视化、展现上就是很重要的一个 Tool,我们基于 AntV 实现一套 AI 可视化插件, AI 可视化插件拥有以下能力:

  • MCP 服务(mcp-server-chart),可在 MCP 客户端上使用可视化能力,在 蚂蚁百宝箱、阿里云百炼、cline,均已上架。
  • Dify 插件(dify-plugin-visualization[3] ), 已上架至 Dify 市场。

这些插件已全部开源,欢迎大家使用,未来规划上架至各大 AI应用市场,增强数据可视化效果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户想了解或使用Dify作为AI代理的实现或使用信息。我需要先回忆一下Dify的相关知识。Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理和应用程序。用户可能想知道如何具体实施或使用它作为AI代理。 首先,我应该介绍Dify的基本概念和核心功能,比如可视化编排和多种模型支持。然后,可能需要分步骤说明如何实现AI代理,包括安装、创建应用、配置Agent工具等。同时,用户可能关心具体的代码示例,所以需要提供API调用或配置文件的例子。 还要考虑用户可能的后续问题,比如性能优化、多模型集成或者企业级应用场景,因此生成相关问题会有帮助。需要确保使用正确的LaTeX格式,比如变量用$...$,独立公式用$$...$$。另外,引用部分要正确标注,比如引用提供的资料中的[^1]和[^2]。 需要检查是否有遗漏的关键点,比如Dify的RAG引擎、支持的模型类型,或者如何扩展自定义工具。确保回答结构清晰,步骤明确,用户能按指南操作。最后,验证所有技术术语和流程的正确性,避免错误信息。</think>### Dify作为AI代理的实现与使用指南 Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理(Agent)和应用程序。其核心功能包括可视化编排AI工作流、支持多种模型(如GPT-4、Claude等)以及RAG引擎[^1]。 #### 一、实现AI代理的步骤 1. **环境搭建** ```bash # 使用Docker部署 git clone https://github.com/langgenius/dify cd dify && docker-compose up -d ``` 2. **创建AI应用** - 在仪表盘选择"创建空白应用" - 配置基础信息:命名空间、模型供应商(如OpenAI) - 设置API密钥:$API_KEY = os.getenv("OPENAI_API_KEY")$ 3. **配置Agent工具** ```yaml # agent_tools.yml示例 tools: - type: web_search config: engine: google max_results: 5 - type: code_interpreter enable: true ``` #### 二、核心功能实现 1. **对话流程控制** ```python from dify_client import DifyClient client = DifyClient(api_key="your_api_key") response = client.generate( inputs={"query": "查询北京天气"}, tools=["web_search", "knowledge_base"], reasoning_mode="chain_of_thought" # $f(x)=\sum_{i=1}^n w_i x_i$ ) ``` 2. **记忆机制** $$M_t = \alpha M_{t-1} + (1-\alpha)E_t$$ 其中$\alpha$为记忆衰减因子,$E_t$为当前对话的嵌入向量 #### 三、典型应用场景 1. 客服自动化(支持上下文保持[^1]) 2. 数据分析助手(集成SQL执行器) 3. 智能文档处理(基于RAG引擎) ```python # RAG实现示例 def retrieve_context(query): embedding = model.encode(query) return vector_db.search(embedding, top_k=3) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值