大模型时代人人都在说这玩意底层是个Transformer,但Transformer到底长啥样。这篇就从底层结构拆开,讲清它是怎么把文字变成可计算的思维的。

1 输入嵌入与位置
首先,模型得先把离散的词元变成能算的向量。Transformer对每个词元做两件事:
- 词嵌入:给每个词元一个可学习的向量,用来承载语义,比如猫和狗的向量应该比猫和电脑更接近。
- 位置编码:Transformer本身不认识顺序,所以必须额外加一个这是第几号词的位置向量,让它知道谁在前谁在后。
具体做法是:输入序列里的每个词元先查词向量表拿到语义向量,再根据它在句子里的位置拿到一个同维度的位置向量,二者相加得到最终输入

下图展示了从离散词元到输入嵌入序列的加工流水线。

2 多头自注意力
有了带位置感的向量句子,下一步就是让每个词元去环顾四周,看自己应该关注谁。这就是自注意力的核心思想:
- 每个位置会生成三组向量:查询Q、键K、值V,可以理解为:
o查询:我现在想找谁
o键:别人身上的标签信息
o值:别人真正要提供的内容
- 当前词用自己的查询去和所有位置的键做相似度计算,算出一组权重,然后对所有位置的值做加权平均,就得到我基于上下文重新理解后的自己。

多头注意力则是:不满足于只看一种关系,而是并行开很多个关注通道:
- 每个头都有自己的一套Q K V投影,它可能更偏向于关注语法结构、实体指代、情绪走向等不同模式。
- 所有头的输出拼接起来,再映射回原维度,就形成了更丰富的上下文表示。
3 前馈网络
自注意力解决的是谁和谁交互的问题,但它本质还是线性变换加权平均,要想表达更复杂的非线性模式,还得靠前馈网络层(FFN)来再加工一次。
Transformer里的FFN对每个位置单独做两层全连接变换:
1.第一层把维度从H升到更大的H′,类似升维扩展特征空间;
2.经过一个非线性激活(原始Transformer用ReLU,后来的大模型更常用GELU);
3.再用第二层线性变换把维度从H′拉回H。 #### 自注意力负责信息交换,FFN负责局部变形,二者叠加起来,就兼具了全局依赖和非线性表达能力。

4 编码器
把输入嵌入喂进来后,编码器的任务就是:在完全可见的前提下,把整句每个位置都语境化。
编码器通常由L层标准模块叠起来,每一层的结构都是:
1.多头自注意力:让当前层所有位置互相交流信息;
2.残差连接加层归一化:把这一层的输出和原输入相加,再做LayerNorm,既保留原特征,又稳定梯度;
3.前馈网络:对每个位置做一次非线性变换;
4.再来一轮残差连接加LayerNorm。
关键特征:
- 编码器的自注意力是双向的:每个位置都能同时看前看后,这对理解整个句子的结构和语义非常重要,比如机器翻译、文本分类。
- 堆叠多层后,高层的表示会越来越抽象,从局部搭配逐渐变成句子级含义。
- 最后编码器输出的是一个序列,每个位置都是带上下文的表示向量,后面解码器会拿这个当外部知识。

5 解码器
解码器负责张嘴说话,在看到编码器输出和已生成前缀的情况下,预测下一个词。它跟编码器有点像,但多了两件非常关键的设计:
1.掩码自注意力:解码器在预测当前位置时,不能偷看后面的词,于是用一个上三角遮罩把未来位置全部屏蔽,让每个位置只能看见自己和之前的词。这保证了自回归生成的因果性。
2.交叉注意力:在掩码自注意力之后,当前步的表示会再去对编码器输出做一次注意力,这一步让解码器能盯着输入再说话,相当于翻译时一边回忆自己刚刚说了什么,一边看原文再继续说。 #### 最后一层输出会经过一个线性映射到词表维度,再接softmax变成下一个词的概率分布。训练时可以一次性预测整句的所有位置;推理时则是经典的自回归解码:生成一个词、把它拼到后面,再生成下一个词。

6 大模型单塔
原始Transformer是一个完整的编码器加解码器结构,非常适合机器翻译这种有输入有输出的任务。但现在的大语言模型,比如GPT家族,常见的是只保留解码器部分:
- 用解码器堆叠很多层,输入是已经生成的前缀,训练时让它预测下一个词;
- 编码器的那一半被折叠进解码器对长上下文的自注意力之中。
Transformer就是一台堆矩阵乘加注意力的通用序列处理机器
大语言模型则是在这台机器上,把参数规模、数据规模、训练预算全部拉满之后的产物。

如何高效转型Al大模型领域?
作为一名在一线互联网行业奋斗多年的老兵,我深知持续学习和进步的重要性,尤其是在复杂且深入的Al大模型开发领域。为什么精准学习如此关键?
- 系统的技术路线图:帮助你从入门到精通,明确所需掌握的知识点。
- 高效有序的学习路径:避免无效学习,节省时间,提升效率。
- 完整的知识体系:建立系统的知识框架,为职业发展打下坚实基础。
AI大模型从业者的核心竞争力
- 持续学习能力:Al技术日新月异,保持学习是关键。
- 跨领域思维:Al大模型需要结合业务场景,具备跨领域思考能力的从业者更受欢迎。
- 解决问题的能力:AI大模型的应用需要解决实际问题,你的编程经验将大放异彩。
以前总有人问我说:老师能不能帮我预测预测将来的风口在哪里?
现在没什么可说了,一定是Al;我们国家已经提出来:算力即国力!
未来已来,大模型在未来必然走向人类的生活中,无论你是前端,后端还是数据分析,都可以在这个领域上来,我还是那句话,在大语言AI模型时代,只要你有想法,你就有结果!只要你愿意去学习,你就能卷动的过别人!
现在,你需要的只是一份清晰的转型计划和一群志同道合的伙伴。作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

Transformer架构全景解析
807

被折叠的 条评论
为什么被折叠?



