还在把Transformer当黑盒?这篇万字长文,带你彻底揭开它的神秘面纱!

Transformer架构全景解析

大模型时代人人都在说这玩意底层是个Transformer,但Transformer到底长啥样。这篇就从底层结构拆开,讲清它是怎么把文字变成可计算的思维的。

1 输入嵌入与位置

首先,模型得先把离散的词元变成能算的向量。Transformer对每个词元做两件事:

  • 词嵌入:给每个词元一个可学习的向量,用来承载语义,比如猫和狗的向量应该比猫和电脑更接近。
  • 位置编码:Transformer本身不认识顺序,所以必须额外加一个这是第几号词的位置向量,让它知道谁在前谁在后。

具体做法是:输入序列里的每个词元先查词向量表拿到语义向量,再根据它在句子里的位置拿到一个同维度的位置向量,二者相加得到最终输入

下图展示了从离散词元到输入嵌入序列的加工流水线。

2 多头自注意力

有了带位置感的向量句子,下一步就是让每个词元去环顾四周,看自己应该关注谁。这就是自注意力的核心思想:

  • 每个位置会生成三组向量:查询Q、键K、值V,可以理解为:

o查询:我现在想找谁

o键:别人身上的标签信息

o值:别人真正要提供的内容

  • 当前词用自己的查询去和所有位置的键做相似度计算,算出一组权重,然后对所有位置的值做加权平均,就得到我基于上下文重新理解后的自己。

多头注意力则是:不满足于只看一种关系,而是并行开很多个关注通道:

  • 每个头都有自己的一套Q K V投影,它可能更偏向于关注语法结构、实体指代、情绪走向等不同模式。
  • 所有头的输出拼接起来,再映射回原维度,就形成了更丰富的上下文表示。

3 前馈网络

自注意力解决的是谁和谁交互的问题,但它本质还是线性变换加权平均,要想表达更复杂的非线性模式,还得靠前馈网络层(FFN)来再加工一次。

Transformer里的FFN对每个位置单独做两层全连接变换:

1.第一层把维度从H升到更大的H′,类似升维扩展特征空间;

2.经过一个非线性激活(原始Transformer用ReLU,后来的大模型更常用GELU);

3.再用第二层线性变换把维度从H′拉回H。 #### 自注意力负责信息交换,FFN负责局部变形,二者叠加起来,就兼具了全局依赖和非线性表达能力。

4 编码器

把输入嵌入喂进来后,编码器的任务就是:在完全可见的前提下,把整句每个位置都语境化。

编码器通常由L层标准模块叠起来,每一层的结构都是:

1.多头自注意力:让当前层所有位置互相交流信息;

2.残差连接加层归一化:把这一层的输出和原输入相加,再做LayerNorm,既保留原特征,又稳定梯度;

3.前馈网络:对每个位置做一次非线性变换;

4.再来一轮残差连接加LayerNorm。

关键特征:

  • 编码器的自注意力是双向的:每个位置都能同时看前看后,这对理解整个句子的结构和语义非常重要,比如机器翻译、文本分类。
  • 堆叠多层后,高层的表示会越来越抽象,从局部搭配逐渐变成句子级含义。
  • 最后编码器输出的是一个序列,每个位置都是带上下文的表示向量,后面解码器会拿这个当外部知识。

5 解码器

解码器负责张嘴说话,在看到编码器输出和已生成前缀的情况下,预测下一个词。它跟编码器有点像,但多了两件非常关键的设计:

1.掩码自注意力:解码器在预测当前位置时,不能偷看后面的词,于是用一个上三角遮罩把未来位置全部屏蔽,让每个位置只能看见自己和之前的词。这保证了自回归生成的因果性。

2.交叉注意力:在掩码自注意力之后,当前步的表示会再去对编码器输出做一次注意力,这一步让解码器能盯着输入再说话,相当于翻译时一边回忆自己刚刚说了什么,一边看原文再继续说。 #### 最后一层输出会经过一个线性映射到词表维度,再接softmax变成下一个词的概率分布。训练时可以一次性预测整句的所有位置;推理时则是经典的自回归解码:生成一个词、把它拼到后面,再生成下一个词。

6 大模型单塔

原始Transformer是一个完整的编码器加解码器结构,非常适合机器翻译这种有输入有输出的任务。但现在的大语言模型,比如GPT家族,常见的是只保留解码器部分:

  • 用解码器堆叠很多层,输入是已经生成的前缀,训练时让它预测下一个词;
  • 编码器的那一半被折叠进解码器对长上下文的自注意力之中。

Transformer就是一台堆矩阵乘加注意力的通用序列处理机器

大语言模型则是在这台机器上,把参数规模、数据规模、训练预算全部拉满之后的产物。

如何高效转型Al大模型领域?

作为一名在一线互联网行业奋斗多年的老兵,我深知持续学习和进步的重要性,尤其是在复杂且深入的Al大模型开发领域。为什么精准学习如此关键?

  • 系统的技术路线图:帮助你从入门到精通,明确所需掌握的知识点。
  • 高效有序的学习路径:避免无效学习,节省时间,提升效率。
  • 完整的知识体系:建立系统的知识框架,为职业发展打下坚实基础。

AI大模型从业者的核心竞争力

  • 持续学习能力:Al技术日新月异,保持学习是关键。
  • 跨领域思维:Al大模型需要结合业务场景,具备跨领域思考能力的从业者更受欢迎。
  • 解决问题的能力:AI大模型的应用需要解决实际问题,你的编程经验将大放异彩。

以前总有人问我说:老师能不能帮我预测预测将来的风口在哪里?

现在没什么可说了,一定是Al;我们国家已经提出来:算力即国力!

未来已来,大模型在未来必然走向人类的生活中,无论你是前端,后端还是数据分析,都可以在这个领域上来,我还是那句话,在大语言AI模型时代,只要你有想法,你就有结果!只要你愿意去学习,你就能卷动的过别人!

现在,你需要的只是一份清晰的转型计划和一群志同道合的伙伴。作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Transformer模型详解 Transformer是一种深度学习模型,最初在2017年的论文《Attention is All You Need》中被提出。它主要用于处理序列数据,尤其是在自然语言处理(NLP)领域取得了显著的成功[^1]。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全基于注意力机制,特别是自注意力机制(self-attention),这使得模型能够并行处理信息,并且更好地捕捉长距离依赖关系。 #### 注意力机制工作原理 注意力机制允许模型在处理一个特定位置的信息时,关注到输入序列中的其他位置。这种机制的核心在于计算查询(query)、键(key)和值(value)之间的相似度,从而决定哪些部分需要更多的注意。具体来说,在Transformer中,每个位置都会生成这三个向量,通过它们的点积来衡量相关性,并使用softmax函数将这些得分转换为权重。最终的结果是所有值向量加权求和的结果,权重反映了各个位置的重要性。 对于自注意力机制而言,查询、键和值都来自于同一个输入序列的不同位置。这样的设计让模型能够在处理当前词的时候,考虑到句子中其他词的影响,进而获取更全面的上下文信息。 ```python # 示例代码:简化版的自注意力机制实现 import torch from torch import nn class SelfAttention(nn.Module): def __init__(self, embed_size, heads): super(SelfAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" self.values = nn.Linear(self.head_dim, embed_size, bias=False) self.keys = nn.Linear(self.head_dim, embed_size, bias=False) self.queries = nn.Linear(self.head_dim, embed_size, bias=False) self.fc_out = nn.Linear(embed_size, embed_size) def forward(self, values, keys, query, mask): N = query.shape[0] value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1] # Split embedding into self.heads pieces values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) queries = query.reshape(N, query_len, self.heads, self.head_dim) energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # queries shape: (N, query_len, heads, head_dim) # keys shape: (N, key_len, heads, head_dim) # energy shape: (N, heads, query_len, key_len) if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3) out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads * self.head_dim ) # attention shape: (N, heads, query_len, key_len) # values shape: (N, value_len, heads, head_dim) # after einsum: (N, query_len, heads, head_dim), then flatten last two dimensions out = self.fc_out(out) return out ``` #### 自然语言处理中的应用 Transformer及其变体已经在多种NLP任务上展现了卓越的表现,包括但不限于机器翻译、文本摘要、问答系统等。BERT(Bidirectional Encoder Representations from Transformers)就是基于Transformer编码器的一种预训练技术,它能够产生上下文相关的词嵌入,极大地提升了下游任务的效果[^1]。此外,还有GPT系列模型,它们利用了Transformer解码器的部分结构,实现了强大的文本生成能力。 除了NLP,Transformer也被应用于计算机视觉等领域,例如Vision Transformer(ViT),它直接将图像分割成块,并作为序列输入给Transformer模型进行处理。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值