数据科学是一个多学科领域,涉及从数据中提取见解和知识。
为了系统地处理数据科学项目,专业人员遵循称为数据科学生命周期的结构化流程。此生命周期包含各个阶段,每个阶段都有特定的任务和目标,以确保有效地开发和部署数据驱动的解决方案。
本文提供了全面的指南来了解数据科学生命周期,并在每个阶段提供详细的解释和示例。
1.问题定义
数据科学生命周期的第一阶段是定义问题。
这涉及了解业务背景、确定要解决的问题以及设定明确的目标。
示例:客户流失预测
-
目标:预测哪些客户可能会取消订阅。
-
业务背景:一家电信公司希望减少客户流失以增加收入和客户保留率。
通过明确定义问题和目标,数据科学团队可以专注于相关数据和方法来开发预测模型。此阶段确保与业务目标保持一致,并为整个项目奠定基础。
2.数据收集
一旦确定了问题,下一步就是收集相关数据。
这涉及从各种来源收集数据,例如数据库、电子表格和外部数据集。
示例:收集客户数据
-
数据来源:客户人口统计、订阅详情、使用模式和客户服务互动。
-
数据类型:结构化数据(例如数字和分类数据)和非结构化数据(例如来自客户服务日志的文本)。
收集全面且相关的数据对于建立准确的模型至关重要。
在我们的示例中,有关客户人口统计、使用模式和互动的数据将有助于识别导致客户流失的因素。
3.数据清理
数据清理或数据预处理包括处理缺失值、删除重复项、纠正错误以及将数据转换为适合分析的格式。
示例:清理客户数据
-
任务:输入缺失值、删除重复记录以及标准化格式(例如日期格式)。
-
挑战:处理不一致的数据条目并处理异常值。
干净的数据可确保分析准确可靠。
4.探索性数据分析(EDA)
EDA 涉及分析数据以了解其潜在的模式、分布和关系。
此步骤有助于识别趋势、异常和建模的潜在特征。
示例:分析客户数据
-
任务:描述性统计(例如平均值、中位数、众数)、可视化(例如直方图、散点图)和相关性分析。
-
洞察:识别与客户流失相关的关键特征,例如年龄、使用频率和客户服务互动。
通过 EDA,数据科学团队可以发现有价值的见解。
例如,可视化使用频率的分布可能会发现使用率较低的客户更有可能流失,从而指导预测模型的特征选择。
5.特征工程
特征工程涉及创建新特征或转换现有特征以提高模型性能。此步骤对于增强模型的预测能力至关重要。
示例:创建客户流失预测特征
-
任务:创建新特征,例如“平均每月使用量”和“上个月的客户服务电话次数”。
-
转换:将分类变量转换为数值表示形式(例如,订阅类型的独热编码)。
有效的特征工程可以显著提高模型的准确性。
例如,“上个月的客户服务电话数量”这一特征可能是客户流失的有力预测因素,因为频繁的呼叫可能表明客户不满意。
6.模型建立
模型构建涉及在准备好的数据上选择合适的算法和训练模型。
此阶段包括将数据分成训练集和测试集、拟合模型和调整超参数。
示例:构建客户流失预测模型
-
算法:逻辑回归、决策树和支持向量机。
-
训练和测试:将数据分成 70% 的训练集和 30% 的测试集,在训练集上训练模型,并在测试集上评估性能。
通过训练不同的模型并评估其性能,数据科学团队可以选择预测客户流失的最佳模型。
例如,如果决策树模型比逻辑回归具有更高的准确度和精确度,则会选择该模型进行部署。
7.模型评估
模型评估涉及使用各种指标(例如准确率、精确率、召回率和 F1 分数)评估训练模型的性能。
此步骤可确保模型能够很好地推广到新数据。
示例:评估客户流失预测模型
-
指标:准确率(正确预测的百分比)、精确率(真实阳性预测的百分比)、召回率(正确识别的实际阳性百分比)和 F1 分数(精确率和召回率的调和平均值)。
-
评估:在测试集上计算这些指标来评估模型性能。
假设决策树模型的准确率为 85%,精确率为 80%,召回率为 75%,F1 得分为 77%。
这些指标表明,该模型在识别可能流失的客户方面表现良好,在精确率(最小化假阳性)和召回率(最小化假阴性)之间取得平衡。
8.模型部署
一旦模型经过评估和微调,它就会被部署到生产环境中,可用于进行实时预测或批处理。
示例:部署客户流失预测模型
-
部署:将模型与公司现有系统(例如客户关系管理 (CRM) 软件)集成。
-
用途:该模型持续监控客户数据并标记可能流失的客户,以便主动保留客户。
部署该模型可让企业实时利用其预测能力。
例如,该模型可能会识别出流失风险较高的客户,从而促使客户服务团队提供个性化的留存服务。
9.监控和维护
部署后,必须持续监控模型的性能并进行维护,以确保其长期保持准确性和相关性。
这包括跟踪性能指标、使用新数据重新训练模型以及进行必要的调整。
示例:监控客户流失预测模型
-
监控:定期检查模型的预测准确性和其他性能指标。
-
维护:使用更新的客户数据定期重新训练模型,以适应客户行为和市场条件的变化。
持续的监控和维护可确保模型适应新模式并保持有效。
例如,如果模型的准确性由于客户行为的变化而下降,则使用最新数据重新训练可以恢复其预测能力。
了解数据科学生命周期对于有效管理数据科学项目(从启动到部署乃至后续)至关重要。
每个阶段(问题定义、数据收集、数据清理、探索性数据分析、特征工程、模型构建、模型评估、模型部署以及监控和维护)在确保数据驱动解决方案的成功方面都发挥着至关重要的作用。
通过遵循这种结构化方法,数据科学家可以系统地解决复杂问题,获得切实可行的见解,并创建可推动业务价值的强大模型。
无论是预测客户流失、优化供应链还是改善医疗保健结果,数据科学生命周期都提供了一个全面的框架,可利用数据解决现实世界的挑战。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。