仅需一万块钱!清华团队靠强化学习让 7B模型数学打败GPT-4o

OpenAI o1和o3模型的发布证明了强化学习能够让大模型拥有像人一样的快速迭代试错、深度思考的高阶推理能力,在基于模仿学习的Scaling Law逐渐受到质疑的今天,基于探索的强化学习有望带来新的Scaling Law。

近日,清华大学NLP实验室、上海AI Lab、清华大学电子系、OpenBMB社区等团队提出一种新的结合过程奖励的强化学习方法——PRIME(Process Reinforcement through IMplicit REwards)。

采用PRIME方法,研究人员不依赖任何蒸馏数据和模仿学习,仅用8张A100,花费一万块钱左右,不到10天时间,就能高效训练出一个数学能力超过 GPT-4o、Llama-3.1-70B的7B模型 Eurus-2-7B-PRIME。

具体而言,研究人员利用Qwen2.5-Math-7B-Base作为基座模型,训练出了新模型Eurus-2-7B-PRIME,并在美国IMO选拔考试AIME 2024上的准确率达到26.7%,大幅超越GPT-4o,Llama3.1-70B和Qwen2.5-Math-7B-Instruct,且仅使用了Qwen Math数据的 1/10。其中,强化学习方法PRIME为模型带来了16.7%的绝对提升,远超已知的任何开源方案。


该项目一经开源就在海外AI社区爆火,短短几天Github取得近300star。

未来,基于PRIME方法和更强的基座模型有潜力训练出接近OpenAI o1的模型。

PRIME方法介绍

长久以来,开源社区严重依赖数据驱动的模仿学习来增强模型推理能力,但这种方法的局限也显而易见——更强的推理能力需要更高质量的数据,但高质量数据总是稀缺,使得模仿和蒸馏难以持续。

虽然OpenAI o1和o3的成功证明了强化学习有着更高的上限,但强化学习有着两个关键挑战:(1)如何获得精准且可扩展的密集奖励;(2)如何设计可以充分利用这些奖励的强化学习算法。

PRIME算法从隐式过程奖励(implicit process reward)的思想出发解决这两个问题。隐式过程奖励模型可以仅在输出奖励模型(outcome reward model, ORM)的数据,即答案的最终对错上进行训练,而隐式地建模过程奖励,最终自动训练出一个过程奖励模型,这整个过程都有严格的理论保证。

详细推导见:https://huggingface.co/papers/2412.01981

基于隐式过程奖励模型的这种性质,研究人员指出将其应用于强化学习有三大优势:

  • 过程奖励:隐式过程奖励模型能够为每个 token 提供价值估计,在提供过程奖励的同时无需训练额外的价值模型(value model)

  • 可扩展性:隐式过程奖励模型只需结果标签即可在线更新。所以,我们可以结合策略模型采样与结果验证器来直接更新PRM,有效缓解分布偏移与可扩展性问题。

  • 简洁性:隐式过程奖励模型本质上就是一种语言模型。在实践中,研究人员发现可以直接用初始的策略模型初始化PRM。

隐式过程奖励解决了PRM在大模型强化学习中怎么用,怎么训,怎么扩展的三大问题,甚至不需要训练额外的奖励模型就可以开始强化学习,易用性和可扩展性极佳。

具体的PRIME算法流程如下图所示,它是一种在线强化学习算法,能够将每个token的过程奖励无缝应用于强化学习流程中。

实验结果

研究人员详细比较了PRIME算法和基线方法。

相比于仅用结果监督,PRIME有着2.5倍的采样效率提升,在下游任务上也有着显著提升。


研究人员还验证了PRM在线更新的重要性,可以看到,在线的PRM更新要显著优于固定不更新的PRM,这也证明了PRIME算法设计和合理性。

此外,研究人员还额外收集数据,基于Qwen2.5-Math-Instruct训练了SOTA水平的EurusPRM,能够在Best-of-N采样中达到开源领先水平。

Showcase演示

Question (AIME 2024试题,Claude-3.5-Sonnet做错)

Answer

Question

Which number is larger? 9.11 or 9.9?

Answer

强化学习是连接已有智能体(大模型)和现实世界(世界模型,具身智能)的桥梁,以及将世界反馈内化为模型智能的路径,将在下一代人工智能的发展中起到重要作用。PRIME 算法创新性地将隐式过程奖励与强化学习结合,解决了大模型强化学习的奖励稀疏问题,有望推动大模型复杂推理能力的进一步提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值